ANALYSE SPHÉRIQUE (K5)

(25 / 08 / 2020, © Monfort, Dicostat2005, 2005-2020)

L'analyse sphérique est une méthode d'analyse des données, voisine de l'analyse des correspondances, qui se ramène aussi à l'analyse générale des données par transformation du tableau initial.

(i) Soit $T \in M_{IJ}$ (N) un tableau de contingence et $F \in M_{IJ}$ (R₊) un tableau (à éléments positifs) donné.

On appelle **analyse factorielle sphérique**, oui simplement **analyse sphérique** (M. VOLLE) de T l'application de l'**agd** au tableau X obtenu à partir de T par les transformations suivantes :

(a)
$$T \mapsto F = (f_{ij})_{(i,j)}$$
, avec $f_{ij} = t_{ij} / t...$

(b) (F,
$$\Phi$$
) \mapsto X = $(x_{ij})_{(i,j)}$, avec $x_{ij} = f_{ij}^{1/2} - \varphi_{ij}^{1/2}$,

où t.. = $e_{l}' T e_{J}$ (total général) et $\Phi = (\phi_{ii})_{(i,i)}$.

L'agd appliquée à X consiste en la décomposition spectrale (diagonalisation) de X'X ou de XX'.

(ii) La méthode est fondée sur la **distance de HELLINGER** entre les tableaux F et Φ , ie :

(1)
$$d^2(F, \Phi) = \sum_{i=1}^{J} \sum_{j=1}^{J} (f_{ij}^{1/2} - \varphi_{ij}^{1/2})^2$$
.

Cette distance s'associe à la distance géodésique sur la sphère :

(2)
$$d^2(F, \Phi) = 2 \cdot Arc \cos(\alpha' \beta),$$

dans laquelle $\alpha_k^2 = F_k^v$, $\beta_k^2 = \Phi_k^v$ (resp k-ième coordonnée des vectorialisés F^v de F et Φ^v de Φ) (cf **vectorialisation d'une matrice**).

(iii) Le tableau Φ est appelé **tableau de référence**. On peut choisir pour Φ le produit des marges de F (ie Φ = F e_J e_I' F) (cf **indépendance stochastique**) ou le tableau nul (ie Φ = 0_{IJ}).

Si T est un **tableau statistique** comportant des éléments négatifs, on peut remplacer F par le tableau F^+ , avec $f_{ij}^+ = |t_{ij}| / \sum_{i=1}^{J} \sum_{j=1}^{J} |t_{ij}|$, \forall $(i, j) \in N_l^* \times N_J^*$, et analyser le tableau noté X^+ , d'élément général $x_{ij}^+ = (f_{ij}^+)^{1/2}$ w (f_{ij}^+) , où w est la **fonction signe** définie par :

1

+1 si
$$u > 0$$
,

(3)
$$w(u) = 0$$
 $\sin u = 0$,
-1 $\sin u < 0$.

Il en va de même pour Φ .

L'inertie du nuage X pr à l'origine est :

(4) tr X' X =
$$\sum_{i=1}^{J} \sum_{j=1}^{J} x_{ij}^2 = d^2(F, \Phi)$$
.

(iv) L'analyse sphérique ne vérifie pas, en général, le principe d'équivalence distributionnelle, sauf (notamment) lorsque $\Phi = F e_J e_I' F$ (produit des marges de F).