CHAÎNE DE MARKOV ERGODIQUE (N2)

(15 / 06 / 2020, © Monfort, Dicostat2005, 2005-2020)

(i) Soit $X = (X_t)_{t \in T}$ une **chaîne de MARKOV** en **temps** discret (avec $T = \mathbf{N}$), à **espace d'état** fini $\mathcal{L} = \{1,...,k\} = N_k^*$ et à **probabilités de transition** stationnaires (cf **stationnarité**). On suppose ce processus déterminé par la **loi initiale** :

(1)
$$p_x = P([X_0 = x_0]), \forall x_0 \in \mathcal{X},$$

et par les probabilités de transition successives :

(2)
$$p_{xy} = P([X_{n+1} = y] / [X_n = x]),$$

éléments de la (k,k)-matrice $P = (p_{xy})$, avec $P e_k = e_k$ (matrice stochastique à droite).

- Si X est une chaîne récurrente et possède une seule classe de récurrence, on dit que X est une chaîne ergodique (cf états d'une chaîne de MARKOV).
- (ii) Cette terminologie est justifiée par le théorème ergodique pour des chaînes de MARKOV finies suivant. Si l'on note $v \in S_k$ (simplexe de \mathbf{R}^k) l'unique vecteur propre de P associé à la valeur propre $\lambda = 1$ (ie P v = v), alors X vérifie la propriété d'ergodicité :

(3)
$$\lim_{n \to +\infty} n^{-1} \cdot (I_k + P + ... + P^{n-1}) = A,$$

avec la matrice $A = [v' \dots v'] \in M_k(R)$.

Si $f: \mathcal{X} \mapsto \mathbf{R}$ est une **fonction numérique** donnée et $Y = (Y_n)_{n \in \mathbf{N}}$ le processus défini par (**changement de variable aléatoire** dans l'espace des états) $Y_n = f(X_n), \ \forall \ n \in \mathbf{N}$, on établit la **loi forte des grands nombres pour les chaînes de MARKOV finies** :

(4)
$$S_n / n \rightarrow^{p.s.} \sum_{n \rightarrow +\infty} \sum_{j=1}^k V_j \cdot f(j) = \mu,$$

avec
$$S_n = \sum_{i=0}^{n-1} Y_i$$
 et $v_j = pr_j v$.

Si l'on pose (notations matricielles) :

$$Z = (I_k - P + A)^{-1} = (z_{ij})_{(i,j)},$$

$$C = (c_{ij})_{(i,j)},$$

avec c_{ij} = v_i . z_{ij} + v_j . z_{ji} - δ_{ij} . v_i - v_i . v_j , σ^2 = $\sum_{i=1}^k \sum_{j=1}^k f(i)$. c_{ij} . f(j) = f'C f, on établit la convergence simple :

1

(6) $n^{-1} V S_n \rightarrow_{n \rightarrow +\infty} \sigma^2$.

Par suite, on établit les deux résultats fondamentaux suivants :

- (a) théorème de la limite centrale pour les chaînes de MARKOV finies :
- (7) $\sigma^2 > 0 \Rightarrow \mathcal{L} \left(n^{-1/2} \sigma^{-1} \left(S_n n \mu \right) \right) \rightarrow n \rightarrow +\infty \mathcal{N}_1 \left(0, 1 \right) \left(\text{loi normale} \right);$
- (b) loi du logarithme itéré pour les chaînes de MARKOV finies. Si $\sigma^2 > 0,$ on a :
- $P \left(lim_n inf \; C_n \; < \; \lambda \right) \; = \; 1, \quad si \; \lambda > 1, \label{eq:polyalpha}$ (8)
- P ($\lim_{n} \inf C_n > \lambda$) = 1, si $\lambda \le 1$,

où C_n = $(2 \text{ n ln}^2 \text{ n})^{-1/2} (S_n - \text{n } \mu)$ et $\text{ln}^2 \text{ n}$ = ln (ln n) désigne le **logarithme (népérien)** itéré de $n \in \mathbb{N} \setminus \{0, 1\}$.