CLAN (A5, B1, B4)

(23 / 09 / 2020, © Monfort, Dicostat2005, 2005-2020)

(i) On appelle **clan** sur un **ensemble** quelconque Ω toute **partie** non vide \mathcal{C} de $\mathcal{L}(\Omega)$ contenant la partie vide et stable par réunion finie et différence relative (cf **réunion ensembliste**, **différence ensembliste**), ie :

(a)
$$\emptyset \in \mathcal{G}$$
;

(b)
$$A \in \mathcal{C}$$
 et $B \in \mathcal{C} \Rightarrow A \cup B \in \mathcal{C}$;

(c)
$$A \in \mathcal{C}$$
 et $B \in \mathcal{C} \Rightarrow A \setminus B \in \mathcal{C}$.

On dit que \mathcal{C} est un **clan unitaire** si, de plus, $\Omega \in \mathcal{C}$.

(ii) Soit $\mathcal{A} \subset \mathcal{L}(\Omega)$ un ensemble de parties de Ω et $\mathcal{C}(\Omega)$ l'ensemble des clans sur Ω . On appelle **clan engendré** par \mathcal{A} l'intersection de tous les clans contenant \mathcal{A} (cf **intersection ensembliste**), ie :

(1)
$$\gamma(\mathcal{A}) = \bigcap \{ C \in \mathcal{C}(\Omega) : \mathcal{A} \subset \mathcal{C} \}.$$

(iii) On dit que $\mathcal{C} \in \mathcal{Q}(\Omega)$ est un **sigma-clan**, ou σ -clan, ssi :

(a)
$$\emptyset \in \mathcal{G}$$
;

(b)
$$A \in \mathcal{C}$$
 et $B \in \mathcal{C} \Rightarrow A \setminus B \in \mathcal{C}$.

(c)
$$A_n \in \mathcal{C} \ (\forall n \in \mathbb{N}) \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{C}$$
;

Tout σ-clan est un clan.

On dit que le sigma-clan \mathcal{C} est un **sigma-clan unitaire** si, de plus, $\Omega \in \mathcal{C}$.