CONDENSATION MATRICIELLE (A3)

(14 / 06 / 2020, © Monfort, Dicostat2005, 2005-2020)

Soit une **matrice** $M \in M_n$ (**R**).

Pour tout $\alpha \in N_{n-1}^*$, on appelle **matrice condensée**, ou simplement **condensée** d'ordre α de M la matrice $M^{(\alpha)} \in M_{n-\alpha}$ (**R**) définie par récurrence selon :

- (a) condition initiale : M⁽⁰⁾ = M;
- (b) $M^{(\alpha)} = (m^{(\alpha)}_{ij})_{(i,j)}$, avec :

$$(1) \qquad m^{(\alpha)}{}_{ij} \; = \; m^{(\alpha \; -1)}{}_{ij} \; - \; (m^{(\alpha \; -1)}{}_{\alpha i} \; . \; m^{(\alpha \; -1)}{}_{\alpha j} \; / \; m^{(\alpha \; -1)}{}_{\alpha \alpha}), \qquad \forall \quad (i, \; j) \; \in \; \{\alpha + 1 \; , \ldots, \; n\}^2.$$

L'opération qui associe à M la matrice $M^{(\alpha)}$ s'appelle parfois **condensation matricielle**.