COURBURE (A7)

(29 / 01 / 2020, © Monfort, Dicostat2005, 2005-2020)

La notion mathématique de **courbure** permet de préciser, localement ou globalement, la **forme** d'une courbe, d'une surface ou d'une variété différentielle. Elle peut donc intervenir en **Statistique** dans les questions non linéaires (cf eg **courbure d'un modèle**, **courbure d'un modèle** de **régression**).

- (i) Soit $I \in \mathcal{F}(\mathbf{R})$ (intervalle réel) et $f: I \mapsto \mathbf{R}^Q$ une fonction vectorielle de classe C^2 définissant une courbe « paramétrée » (au sens de l'analyse mathématique) $\Gamma = \{(x, y = f(x)) \in I \times \mathbf{R}^Q\}$ dans \mathbf{R}^Q (cf classe d'une application).
 - (a) si D f \neq 0, la **longueur d'un arc de courbe** est le nombre s \in **R** tq :

(1)
$$||D f(s)||^2 = 1$$
,

où D f désigne la dérivée vectorielle de f et $u \mapsto ||u||^2 = \Sigma_{q=1}^Q u_q^2$ désigne le carré de la norme euclidienne dan \mathbf{R}^Q .

On peut alors « reparamétrer » Γ à l'aide de s ;

- (b) on définit la **courbure (scalaire)** de Γ au point s (courbure ponctuelle, ou courbure locale) à l'aide de la dérivée seconde, selon :
- (2) $c(s) = ||D^2 f(s)||$.

Autrement dit, le **cercle osculateur** de Γ au point s est un cercle de rayon 1 / c (s).

- (ii) Si l'on décompose le vecteur D² f (s) selon :
- (3) $D^2 f(s) = t(s) + n(s)$,

où t (s) (resp n (s)) est le **vecteur tangent** (resp le **vecteur normal**) à Γ au point s, la courbure scalaire de Γ au point s vaut :

(4)
$$c(s) = ||n(s)|| / ||Df(s)||^2$$
, ou $c(s) = ||Df(s)||^{-2} . ||n(s)||$.

On peut alors définir directement la **courbure moyenne** d'un arc de courbe tq le précédent.

- (ii) Des notions de courbure analogues peuvent être définies, plus généralement, pour une variété « régulière » (eg de classe C^p), en utilisant eg des courbes « décrites » sur une telle variété.
- (iii) En **Statistique**, la notion de courbure se rencontre dans divers **contextes statistiques** (cf linéaire, modèle non linéaire, non linéarité), dont les suivants :

1

- (a) fonction de vraisemblance. Cette fonction $(X, \theta) \in \mathbb{R}^N \times \mathbb{R}^Q \mapsto L(X, \theta) = dP_{\theta}^X / d\mu$ s'associe à un modèle statistique qui est, en principe, un modèle dominé (pr à une mesure donnée). Sa seconde application partielle $\theta \mapsto L(X, \theta)$ définit une (sous-)variété différentielle stochastique (en raison de X) : il s'agit en général d'une hyper-surface $\theta \mapsto L(X, \theta)$ dans \mathbb{R}^{Q+1} ;
- (b) modèle de régression (non linéaire) (cf régression). L'équation (paramétrée) $b \in \mathbf{R}^Q \mapsto F$ (b) d'un modèle non linéaire, dans laquelle F dépend de la (N,K)-matrice d'observation X des K exogènes ξ , définit une (sous-)variété différentielle dans l'espace \mathbf{R}^{Q+N} ;
- (c) **estimateur ensembliste**. Un tel estimateur « régional » définit une « zone » plus ou moins « courbe » dans l'espace des **paramètres** ;
 - (d) région de confiance (ou test associé) (même contexte qu'en (c)).

En effet, la représentation géométrique de ces problèmes peut conduire à étudier la courbure « locale » de ces variétés, ie en général au voisinage de la vraie valeur d'un paramètre.