DISTANCE DE FAN (A4, A5, C, G8, N)

(21 / 09 / 2020, © Monfort, Dicostat2005, 2005-2020)

(i) Soit (Ω, \mathcal{F}, P) un espace probabilisé, $(\mathcal{X}, ||.||)$ un espace normé et \mathcal{B} sa tribu borélienne. On note $\mathcal{M}(\Omega, \mathcal{X})$ l'espace vectoriel des va $\Omega \mapsto \mathcal{X}$, définies sur Ω et à valeurs dans \mathcal{X} .

On appelle **norme de K. FAN** la **norme** définie sur $\mathcal{M}(\Omega, \mathcal{X})$ par :

(1)
$$||\xi||_{KF} = \inf \{ \epsilon > 0 : P([||\xi|| > \epsilon]) < \epsilon \}.$$

La **distance de K. FAN** sur \mathscr{M} (Ω , \mathscr{L}) est la distance δ_{F} déduite de la norme précédente, ie :

(2)
$$\delta_F(\xi, \eta) = ||\xi - \eta||_{KF} = \inf \{ \epsilon \in \mathbf{R}_+^* : P([||\xi - \eta|| > \epsilon]) < \epsilon \}.$$

- (ii) On montre que la norme (ou la distance) de FAN précédente est compatible avec la **convergence en probabilité** des **suites** de va au sens où :
- (3) $\lim_{n} ||X_n||_{KF} = 0 \iff P-\lim_{n} X_n = 0.$

Alors, l'espace \mathcal{M} (Ω, \mathcal{X}) est un **espace métrique** complet ssi \mathcal{X} est un **espace complet**.

Si l'on note δ la **distance de Y.V. PROKHOROV** suivante :

(4)
$$\delta(\xi, \eta) = \inf \{ \varepsilon > 0 : P([\xi \in B]) \le P([\eta \in B_{\varepsilon}]) + \varepsilon, \forall B \in \mathcal{B} \},$$

et si P $^\xi$ et P $^\eta$ sont resp les lois marginales (ou lois propres) de ξ et de $\eta,$ on montre (V. STRASSEN) que :

(5)
$$\inf_{(\xi,\eta) \in \mathcal{C}_0} ||\xi - \eta||_{KF} = \delta(\xi, \eta),$$

où $\mathcal{G}_0 = \{(\xi, \, \eta) \in (\mathcal{L}_{\mathcal{X}}^2 (\Omega, \mathcal{F}, P))^2 : P^\xi = P_0^\xi, \, P^\eta = P_0^\eta\}, \, \text{où } P_0^\xi \text{ et } P_0^\eta \text{ sont des Ip données.}$

(iii) La distance de FAN s'étend au cas où $\mathcal X$ est un **espace métrique** ($\mathcal X$, d), en remplaçant dans (2) la norme ||.|| par d.