ÉCART ABSOLU MOYEN (C5, F3)

(04 / 11 / 2019, © Monfort, Dicostat2005, 2005-2019)

L'écart absolu moyen est un indicateur de dispersion d'une va ou de sa loi. Il peut se comparer à l'écart-type.

(i) Soit (Ω, \mathcal{F}, P) un **espace probabilisé** et $\xi : \Omega \mapsto \mathbf{R}$ une **vars** de **loi** P^{ξ} .

On appelle **écart absolu moyen centré** en $\alpha \in P$ (théorique) de ξ ou de P^{ξ} le nombre réel, qui existe si $\xi \in L_{\mathbf{R}}^{-1}(\Omega, \mathcal{F}, P)$, défini par :

(1)
$$\delta_{\alpha} = E |\xi - \alpha| = \int |x - \alpha| dP^{\xi}(x).$$

Si α = E ξ , on appelle simplement écart absolu moyen (théorique) le nombre δ = $\delta_{E\xi}$.

(ii) Soit X = $(X_1,...,X_N)$: $\Omega \mapsto \textbf{R}^N$ un N-échantillon aléatoire $tq \ X_n \sim P^{\xi}, \ \forall \ n=1,...,N$

On appelle écart absolu moyen centré en $a \in R$ (empirique) de X (ou de ξ) la va :

(2)
$$d_N(a)$$
 ou $d_a(N) = N^{-1} \sum_{n=1}^{N} |X_n - a|$.

En pratique, a est une va ou une **statistique** calculée à partir de X. On appelle ainsi écart absolu moyen (empirique) la va :

(3)
$$d_N = N^{-1} \sum_{n=1}^{N} |X_n - \overline{X}_N|,$$

où $\overline{X}_N = e_N' X / e_N' e_N$ (moyenne empirique de X).

(iii) On montre que δ_{α} est minimum lorsque $\alpha = Q_{1/2} \xi$ (**médiane** théorique de ξ). De même, d_N (a) est minimum lorsque a = m_N X (**médiane empirique** de X).

Si N > 2, on montre que :

$$(2 \ / \ N)^{1/2} \le d_N \ / \ S_N \le (1 - N^{-2})^{1/2} \qquad \text{si } N \in 2 \ \textbf{N} + 1,$$

$$(4) \qquad (2 \ / \ N)^{1/2} \le d_N \ / \ S_N \le 1 \qquad \qquad \text{si } N \in 2 \ \textbf{N},$$

où $S_N^2 = X' P X / N$ désigne la variance empirique.

(iv) Les notions précédentes interviennent dans diverses situations statistiques (cf estimateur à distance minimale, estimateur quantilaire, méthode des moindres écarts absolus, méthodes à distance minimale, régression quantilaire).

1