ESPACE L^p (A5)

(06 / 05 / 2020, © Monfort, Dicostat2005, 2005-2020)

(i) Soit (E, \mathcal{A} , μ) un **espace mesuré**, $\mathcal{M}(E, \overline{R})$ l'ensemble des fonctions \mathcal{A} -mesurables à valeurs dans \overline{R} et $p \in [1, +\infty]$.

On définit sur \mathcal{M} (E, $\overline{\mathbf{R}}$) une semi-norme N_p selon :

$$N_{p}(f) = \{ \int^{*} |f|^{p} d\mu \}^{1/p}$$
 si $p \neq +\infty$,

(1)
$$N_{\infty}\left(f\right) = \inf\left\{y \in \overline{\mathbf{R}}_{+} : \mu\left(\left[\left|f\right| \geq y\right]\right) = 0 \quad \text{sinon,} \right.$$

où ∫^{*} désigne l'**intégrale** supérieure.

On appelle N_{∞} (f) la borne supérieure essentielle, ou borne supérieure en mesure, de f.

(ii) On montre que, \forall p \in [1, + ∞]:

(a)
$$N_p(0) = 0$$
 et $N_p(\alpha \cdot f) = \alpha \cdot N_p(f)$, $\forall \alpha \in \mathbb{R}_+$;

- (b) N_p (f + g) $\leq N_p$ (f) + N_p (g), \forall (f, g) $\in \{\mathscr{M}(\mathsf{E}, \ \overline{\mathsf{R}})\}^2$ (inégalité de H. MINKOWSKI) ;
 - (c) $f \le g \Rightarrow N_p$ (f) $\le N_p$ (g) (croissance de la semi-norme);
- (d) si $(p, q) \in]1,+\infty[$ x $]1,+\infty[$ est un couple de **nombres conjugués** (ie tq $p^{-1} + q^{-1} = 1$) ou si p = 1 et $q = +\infty$, ou encore si $p = +\infty$ et q = 1, l'inégalité de O. HÖLDER est vérifiée :
- (2) $N_1 (f g) \leq N_p (f) \cdot N_q (g), \quad \forall (f, g) \in \{\mathcal{M}(E, \overline{R})\}^2.$
- (iii) Si N_p (f) < $+\infty$, on dit que f est une **fonction de puissance p-ième intégrable** : ainsi f est dite intégrable si p = 1, de carré intégrable si p = 2, etc (cf **fonction intégrable**).

L'ensemble des fonctions dont la puissance p-ième est intégrable est un **espace vectoriel** semi-normé noté $\mathcal{L}_{\bar{R}}^p$ (E, \mathcal{A} , μ), ou $\mathcal{L}_{\bar{R}}^p$ (μ), ou simplement \mathcal{L}^p si aucune ambiguïté sur l'espace mesuré n'en résulte (cf aussi **espace normé**).

(iv) Soit $\mathcal{N} = \{f \in \mathcal{L}^p : \mu ([f \neq 0]) = 0\}$ l'ensemble des fonctions μ -négligeables de L^p (cf fonction négligeable).

Deux fonctions f et g sont appelées fonctions μ -équivalentes ssi f - $g \in \mathcal{N}$. \mathcal{N} définit ainsi une relation d'équivalence sur \mathcal{L}^p . L'ensemble des classes

1

d'équivalence de \mathcal{L}^p , ie l'**ensemble quotient** \mathcal{L}^p / \mathcal{N} , est noté L \bar{R}^p (E, \mathcal{A} , μ) (ou encore L \bar{R}^p (μ), ou simplement L^p).

On définit, de manière analogue :

- (a) les espaces $\mathcal{L}_{\mathbf{C}}^{\mathsf{p}}$ (E, \mathcal{A} , μ) (resp $\mathsf{L}_{\mathbf{C}}^{\mathsf{p}}$ (E, \mathcal{A} , μ)) comme les espaces vectoriels des (resp classes de) fonctions \mathcal{A} -mesurables, à valeurs dans \mathbf{C} , qui sont de puissance p-ième intégrable (pr à μ);
- (b) les espaces $\mathcal{L}_{\mathbf{K}(n)}^p$ (E, \mathcal{A},μ) (resp $L_{\mathbf{K}(n)}^p$ (E, \mathcal{A},μ)) des (classes de) fonctions à valeurs dans \mathbf{K}^n qui sont de puissance p-ième intégrable, ie dont chaque coordonnée est dans $\mathcal{L}_{\mathbf{K}}^p$ (resp dans $L_{\mathbf{K}}^p$), avec $\mathbf{K} = \mathbf{R}$ ou $\mathbf{K} = \mathbf{C}$ (où $\mathbf{K}(n)$ désigne \mathbf{K}^n).
- (v) De façon générale, si F est un espace vectoriel réel (resp complexe) de dimension finie (Dim F = n), on note \mathcal{L}_F^p (E, \mathcal{A} , μ) l'espace semi-normé des fonctions f : E \mapsto F qui sont de puissance p-ième intégrable, ie dont chaque fonction coordonnée, rapportée à une base (e_i)_{i=1,...,n} de F, est de puissance p-ième intégrable.

L'espace quotient est alors noté L_F^p (E, \mathcal{A} , μ) ou simplement L_F^p . On suppose alors que F est muni d'une **tribu borélienne** \mathcal{B}_F et que les fonctions f considérées sont (\mathcal{A} , \mathcal{B}_F)-mesurables.

- (vi) On étend la définition des espaces L_F^1 au cas où F est un **espace de BANACH** (cf **intégrale de PETTIS**).
- (vii) La convergence pour la norme N_p définie sur L^p est appelée **convergence en moyenne d'ordre p**, ou **convergence en norme dans L^p** (cf **convergence dans L^p**).

On parle de **convergence en moyenne** lorsque p = 1, de **convergence en moyenne quadratique** lorsque p = 2.

Lorsqu'on munit F d'un **produit scalaire** (y', y") \mapsto y' . y", l'espace L_F^2 (E, \mathcal{A} , μ) devient un espace pré-hilbertien s'il est muni, à son tour, du produit scalaire suivant :

(3)
$$(f, g) \mapsto \langle f, g \rangle = \int f \cdot g \, d\mu$$
,

dont la norme associée est justement N_2 (norme aussi notée $||.||_2$). Cet espace est complet : donc L_F^2 est un **espace de HILBERT** réel (ou complexe).

(vii) Lorsque les fonctions $f : E \mapsto F$ sont des variables aléatoires (ie des applications mesurables), on définit ainsi des espaces généraux de va.