ESTIMATEUR DE LA FONCTION DE RÉPARTITION (C5, H)

(14 / 01 / 2020, © Monfort, Dicostat2005, 2005-2020)

On considère un modèle statistique de base $(\Omega, \mathcal{F}, \mathcal{L})$ et son modèle image $(\mathcal{L}, \mathcal{L}, \mathcal{L})$ par une vars $\xi : \Omega \mapsto \mathcal{L}$.

On suppose que l'espace d'observation est $(\mathcal{X}, \mathcal{B}) = (\mathbf{R}, \mathcal{B}_{\mathbf{R}})$. On note F la **fonction de répartition** associée à une **loi** $\mathsf{P}^\xi \in \mathscr{Q}^\xi$ possible pour ξ et l'on observe un **échantillon iid** $\mathsf{X} = (\mathsf{X}_1, ..., \mathsf{X}_N)$ issu de la **variable parente** ξ .

Pour estimer F à l'aide de X, on cherche une fonction F_N^{\sim} dans l'**ensemble** \mathscr{T} des fr possibles (ensemble associé à \mathscr{L}^{ξ}). On considère ainsi que l'ensemble des **paramètres** θ du **problème de décision** (ie ici **problème d'estimation**) considéré est $\Theta = \mathscr{T}$ et que l'espace des **décisions** D est l'ensemble des fr tq F_N^{\sim} .

F peut être estimée à partir de la **fonction de répartition empirique** F_N : cet estimateur « naturel » est le plus simple (cf **statistique naturelle**), mais peu pratique pour les calculs analytiques.

(i) Pour résoudre le problème d'estimation, on doit choisir une **fonction de perte** $L: \Theta \times D \mapsto \mathbf{R}$. Celle-ci est souvent définie à l'aide d'une distance : la méthode d'estimation correspondante est appelée **méthode à distance minimum** (cf **estimateur à distance minimum**).

Des exemples classiques de fonction de perte sont les suivants :

(a)
$$L_p(F, F_N^-) = \int |F - F_N^-|^p dF$$
, $\forall p \in \mathbf{N}^*$ (norme dans L^p),

avec, en particulier (norme de type quadratique) :

(1)
$$L_2(F, F_N^-) = \int (F - F_N^-)^2 dF$$
,

et (norme de type supremum):

- (2) $L_{\infty}(F, F_{N}^{\sim}) = \sup_{x \in \mathbb{R}} |F(x) F_{N}^{\sim}(x)|;$
 - (b) la fonction de perte plus générale :

(4)
$$L_{p,\psi}(F, F_N^{-}) = \int |F - F_N^{-}|^p \psi(F) dF, \quad \forall p \in \mathbf{N}^*,$$

où ψ : [0,1] \mapsto **R**₊ est supposée continue.

(ii) Lorsque $L = L_{\infty}$, le **théorème de CANTELLI-GLIVENKO** exprime une propriété de **convergence presque sûre** :

(5) $L_{\infty}(F, F_N) \rightarrow p.s. 0.$

(iii) Lorsque L = L₂, on considère la **statistique d'ordre** $X^{(.)} = (X^{(1)}, ..., X^{(N)})$ associée à X, le **groupe de transformations** $\mathscr G$ définies sur l' « espace » $\mathscr X$ (.) des statistiques d'ordre associé à $\mathscr X$ et l'on suppose que :

(a) $\phi: \mathbf{R} \mapsto \mathbf{R}$ est une fonction continue (cf application continue) et strictement croissante ;

(b) g (X^(.)) = g (X⁽¹⁾,..., X^(N)) = (
$$\phi$$
 (X⁽¹⁾),..., ϕ (X^(N))), \forall g \in \mathscr{G} .

Une règle de décision pure est alors de la forme :

$$(6) \qquad \mathsf{F_{N}}^{\sim}\left(x\right) \; = \; \Sigma_{n=1}^{N-1} \; u_{n} \; . \; \mathbf{1}(\mathsf{A}_{n} \; (x)) \; + \; \mathbf{1}(\mathsf{B}_{N} \; (x)), \qquad \forall \; x \in \mathbf{R},$$

où $0 \le u_1 \le ... \le u_{N-1} \le 1$, $A_n = [X^{(n)}, \ X^{(n+1)}[$ et $B_N = [X^{(N)}, \ +\infty[$ (en notant $\mathbf{1}(R)$ la fonction indicatrice d'une partie R de \mathbf{R}).