ESTIMATEUR DE VRAISEMBLANCE MOYENNE (G, H1, H3)

(15 / 01 / 2020, © Monfort, Dicostat2005, 2005-2020)

Lorsqu'une fonction de vraisemblance admet une valeur centrale, on peut définir un estimateur correspondant en maximisant cette valeur par rapport au paramètre d'intérêt.

(i) Soit $(\mathcal{X}, \mathcal{B}, (P_{\theta}^{\mathsf{X}})_{\theta \in \Theta})$ un **modèle paramétrique**, avec $\Theta = \mathbf{R}$, μ une **mesure positive** σ -finie sur \mathcal{B} et f (X , θ) = dP_{θ}^{X} / $d\mu$ la **fonction de vraisemblance** du modèle.

On appelle **estimateur de vraisemblance moyenne** de θ (G.A. BARNARD) l'estimateur θ^* suivant, défini par la **moyenne** relative à θ :

(1)
$$\theta^* = A/B$$
, avec $A = \int \theta \cdot f(X, \theta) d\theta$ et $B = \int f(X, \theta) d\theta$,

lorsque ces intégrales existent.

C'est ainsi une **caractéristique** de **centralité** (aléatoire à travers X) de la fonction de vraisemblance f, ie de L (θ) : $\theta \mapsto f(X, \theta)$.

Lorsque f est gaussienne (cf **loi gaussienne**), θ^* n'est autre que l'**estimateur du mv** (gaussien) usuel.

(iii) La notion s'étend à un paramètre vectoriel, ie à un modèle tq $\Theta = \mathbf{R}^Q$ (même définition qu'en (1)). On obtient donc :

(2)
$$\theta^* = A/B$$
, avec $A = \int \theta \cdot f(X, \theta) \Pi_{\alpha=1}^{Q} d\theta_{\alpha} \text{ et } B = \int f(X, \theta) \Pi_{\alpha=1}^{Q} d\theta_{\alpha}$.

(iv) Dans un cadre bayésien, avec une loi a priori Π définie sur une tribu \mathcal{B}_Θ de parties de Θ , l'estimateur est modifié selon :

(3)
$$\theta^*(\Pi) = A/B$$
, avec $A = \int \theta \cdot f(X, \theta) d\Pi(\theta)$ et $B = \int f(X, \theta) d\Pi(\theta)$.

(iv) Lorsque f est gaussienne, θ^* n'est autre que l'**estimateur du mv** usuel.