ESTIMATEUR PAR RÉGRESSION (H, J1, M)

(i) En **théorie des sondages**, dans le même cadre que celui définissant l'**estimateur par différence**, on suppose que Y vérifie une hypothèse bayésienne de la forme (cf **superpopulation**) :

(1) EY =
$$b_0 + b_1 X$$
, avec VY = $\sigma^2 \cdot I_M$.

Pour estimer eg le total $T = e_M' Y$, la méthode de prédiction bayésienne revient ici à estimer (b_0, b_1) à l'aide de l'**estimateur des moindres carrés ordinaires** $(b_0^{\hat{}}, b_1^{\hat{}})$ lié au modèle (1), ie à l'aide du modèle :

(2)
$$y = b_0 + b_1 x + u$$
, avec $E u = 0$, $V u = \sigma^2 \cdot I_N$.

On appelle alors estimateur par régression de T l'estimateur :

(3)
$$T_N' = M \cdot \overline{y}_N + b_1 \cdot (e_M' X + M \overline{x}_N),$$

où \bar{x}_N (resp \bar{y}_N) est la **moyenne empirique** de ξ (resp de η) calculée à l'aide de l'**échantillon** (x, y). La formule (3) suppose donc X connu.

L'estimateur par régression de la moyenne \overline{Y}_M = T / M (moyenne théorique de η dans la population Ω) se déduit de (3) selon :

(4)
$$T_N'' = M^{-1} \cdot T_N' = \overline{y}_N + b_1 \cdot (\overline{X}_M - \overline{x}_N),$$

où $\overline{X}_M = M^{-1}$. e_M' X est la moyenne théorique de ξ dans la population Ω .

(ii) On montre que l'estimateur par régression est asymptotiquement sans biais (cf biais asymptotique).