ÉTENDUE (C5, F3, F6)

(07 / 05 / 2020, © Monfort, Dicostat2005, 2005-2020)

L'étendue désigne une caractéristique de dispersion simple qui peut concerner :

- (a) soit une **va** ou sa **lp** (étendue théorique). La notion peut se rapprocher de la notion de support (cf support d'une probabilité, support d'une fonction);
- (b) soit un échantillon engendré par une telle va (étendue empirique), et notamment un **échantillon iid**. Dans ce cas, la notion peut se rapprocher de celle de valeur extrême.
- (i) Soit (Ω, \mathcal{F}, P) un **espace probabilisé**, $\xi : \Omega \mapsto \mathbf{R}$ une **vars** dont la **loi de probabilité** est P^{ξ} , f la **densité de probabilité** de P^{ξ} pr à λ_1 et Supp $f = I \in \mathcal{F}(\mathbf{R})$ (intervalles de \mathbf{R}) le **support** de f.

On appelle **étendue** (théorique) de ξ (ou de P^{ξ} , ou encore de f) le nombre :

(1) $E = \sup I - \inf I$,

qui peut être infini, et qui s'interprète comme un paramètre de dispersion.

Si I est borné, eg si I = [a, b], avec a $< \infty$ et b $< \infty$, l'étendue est E = b - a, la **semi-étendue** (théorique) étant alors définie par E' = (b - a) / 2.

(ii) Soit $X = (X_1,..., X_N) : \Omega \mapsto \mathbb{R}^N$ un vecteur aléatoire (échantillon) donné et $X^{(.)} = (X^{(1)},...,X^{(N)})$ sa statistique d'ordre, définie par :

(2)
$$X^{(1)} \le X^{(2)} \le ... \le X^{(N-1)} \le X^{(N)}$$

$$\{X^{(1)},...,X^{(N)}\} = \{X_1,...,X_N\}.$$

On appelle étendue, ou intervalle de variabilité, (empirique) de X la statistique :

(3)
$$E_N = X^{(N)} - X^{(1)} = \max_{n=1}^{N} X_n - \min_{n=1}^{N} X_n$$
,

aussi notée R_N (de l'anglais « range »), U_N ou simplement U.

L'étendue empirique E_N est un estimateur naturel de l'étendue théorique (cf statistique naturelle).

On appelle semi-étendue, ou parfois étendue moyenne, (empirique) la statistique :

1

(4)
$$E_N' = E_N / 2 = (X^{(N)} - X^{(1)}) / 2.$$

On appelle étendue réduite (empirique) la statistique :

(5)
$$E_N'' = E_N / S_N$$
,

où $S_N^2 = N^{-1} \Sigma_n (X_n - \overline{X}_N)^2$ (variance empirique naturelle) et $\overline{X}_N = N^{-1} \Sigma_{n=1}^N X_n$ (moyenne empirique). Dans un problème d'estimation, la variance empirique est parfois remplacée par la variance corrigée $(N-1)^{-1} N S_N^2$.

(iii) Si X = $(X_1,...,X_N)$ est un échantillon iid comme la **variable parente** ξ précédente et que Supp f = [a,b], un estimateur simple du paramètre $(a,b) \in \mathbf{R}^2_{\leq}$ est :

(6)
$$(a_N^-, b_N^-) = (X^{(1)}, X^{(N)}),$$

et l'étendue théorique E = b - a peut alors être estimée par la statistique :

(7)
$$E_N = b_N^- - a_N^-$$
.

(iv) Lorsque X contient des **aberrations** à ses deux extrêmités, ie $X^{(1)}$,..., $X^{(L)}$ et $X^{(M)}$,..., $X^{(N)}$ (avec $1 \le L \le N-1$ et $2 \le M \le N$), l'estimateur modifié $(a_N^\#, b_N^\#) = (X^{(L+1)}, X^{(M-1)})$ (avec L < M) définit l'**étendue réelle** (empirique) $E_N = b_N^\# - a_N^\#$.

(ii) On montre que:

(a) si $\xi:\Omega\mapsto \mathbf{R}$ est la variable parente de loi P^ξ qui engendre X (échantillon iid), f la densité de probabilité de P^ξ pr à λ_1 et F la **fr** de P^ξ . On note $\mathscr{L}(\mathsf{E}_\mathsf{N})$ la **loi** de l'étendue E_N . La densité h de $\mathscr{L}(\mathsf{E}_\mathsf{N})$ pr à λ_1 s'explicite alors selon :

(8)
$$h(u) = N(N-1) \cdot \int_{\mathbb{R}} \{F(z+u) - F(z)\}^{N-2} f(z+u) f(z) dz, \quad \forall u \in \mathbb{R};$$

(b) si X ~ \mathcal{N}_N (μ , σ^2 . I_N) (**loi normale multidimensionnelle** à dispersion « scalaire »), on utilise aussi un autre **estimateur** de σ^2 que S_N^2 associé à (5). Cet estimateur T_N est indépendant de E_N et vérifie :

(9)
$$\mathscr{L}(v T_N / \sigma^2) = \mathscr{L}_v^2$$
 (loi du chi-deux à v degrés de liberté).

La loi de la statistique E_N" définie en (5) est alors appelée **loi de l'étendue réduite**.

(iii) On appelle:

(a) étendue d'ordre L, ou L-étendue, (empirique) la statistique :

(10)
$$E_N(L) = X^{(N-L+1)} - X^{(L)}, \forall L = 1,..., N;$$

(b) quasi-étendue d'ordre L (empirique) la statistique :

(11)
$$E_{N}'(L) = X^{(N-L)} - X^{(L+1)}, \forall L = 0, 1, ..., N-1.$$

On établit les relations élémentaires suivantes :

(12)
$$E_N(1) = E_N'(0) = E_N \text{ et } E_N(L) = -E_N(N-L+1).$$