FONCTION DISCRIMINANTE DE FISHER (17, K7, K9)

(10 / 06 / 2020, © Monfort, Dicostat2005, 2005-2020)

La fonction discriminante de FISHER est une fonction discriminante utilisée dans le cas où l'on veut imputer un échantillon à une population parmi deux.

(i) Soit (Ω, \mathcal{F}) un **espace probabilisable** et $\mathscr{L} = \{P_{\theta(1)}, P_{\theta(2)}\}$ une **famille** constituée de deux **mesures de probabilité** définies sur \mathscr{F} , où $\theta(i)$ désigne, par commodité, θ_i (i = 1, 2). On note souvent $\Theta = \{1, 2\}$ au lieu de $\Theta = \{\theta_1, \theta_2\}$ et l'on munit \mathscr{L} d'une **probabilité a priori** $\Pi = \pi_1 \delta_1 + \pi_2 \delta_2$ (avec $\pi_1 + \pi_2 = 1$, $\pi_1 > 0$ et $\pi_2 > 0$), où δ_i désigne la **masse de DIRAC** placée en i (i = 1, 2).

D'autre part, soit $\xi: \Omega \mapsto \mathbf{R}^K$ un **vecteur aléatoire** réel donné. Le **modèle image** par ξ du modèle de base $(\Omega, \mathcal{F}, \mathcal{L})$ précédent est donc $(\mathbf{R}^K, \mathcal{L})$ $(\mathbf{P}_1^{\xi}, \mathbf{P}_2^{\xi})$.

Π exprime alors que ξ est tiré selon la loi P_1^{ξ} avec la probabilité π_1 ou selon la loi P_2^{ξ} avec la probabilité complémentaire π_2 = 1 - π_1 .

(ii) Le **problème de discrimination** consiste ici à déterminer la lp P_{θ}^{ξ} qui a généré l'observation ξ . Soit p_{12} (resp p_{21}) la probabilité de décider, à tort, que ξ a été tiré selon la loi P_{2}^{ξ} (resp P_{1}^{ξ}) alors que la loi qui l'a engendré est P_{1}^{ξ} (resp P_{2}^{ξ}), ie :

(1)
$$p_{21} = P(\theta = 2/\theta = 1),$$

 $p_{12} = P(\theta = 1/\theta = 2).$

La probabilité d'une imputation erronée est donc :

(2)
$$p = p_{21} \pi_1 + p_{12} \pi_2$$
.

(iii) On suppose que les lois P_{θ}^{ξ} admettent resp pour **densités** pr à la **mesure de LEBESGUE** λ_K les fonctions f_{θ} (θ = 1, 2).

On appelle alors fonction discriminante de R.A. FISHER le logarithme du rapport des vraisemblances (ou rapport de vraisemblance) f_1 / f_2 , ie :

(3)
$$d(\xi) = \ln \{f_1(\xi) / f_2(\xi)\} = \ln f_1(\xi) - \ln f_2(\xi).$$

Si $P_{\theta}^{\xi} = \mathcal{N}_{K}$ (μ_{θ} , Σ_{θ}) ($\theta = 1, 2$) (loi normale multidimensionnelle), on appelle fonction discriminante quadratique de R.A. FISHER la statistique résultant de (3), ie :

1

(4)
$$q(\xi) = (\xi - \mu_1)' \Sigma_1^{-1} (\xi - \mu_1) - (\xi - \mu_2)' \Sigma_2^{-1} (\xi - \mu_2).$$

Par suite, en posant :

(5)
$$\Lambda = \text{Log}(|\Sigma_2| / |\Sigma_1|) + 2 \text{Log}(\pi_1 / \pi_2),$$

la **décision** d'affectation (imputation de ξ à l'une des deux populations ou à l'une des deux lois) est déterminée comme suit :

(a) si q (
$$\xi$$
) < Λ , alors $\mathcal{L}(\xi) = P_1^{\xi}$;

(b) si q
$$(\xi) \ge \Lambda$$
, alors $\mathcal{L}(\xi) = P_2^{\xi}$.

Cette règle de décision se résume selon :

(6)
$$\mathscr{L}(\xi) = \mathbf{1}(q(\xi) < \Lambda) \cdot P_1^{\xi} + \mathbf{1}(q(\xi) \ge \Lambda) \cdot P_2^{\xi},$$

où 1(A) désigne la fonction indicatrice d'une partie A.