FONCTION NÉGLIGEABLE (A10, E)

(26 / 07 / 2020, © Monfort, Dicostat2005, 2005-2020)

Comme la notion de **fonction dominée**, celle de **fonction négligeable** permet de comparer deux fonctions au voisinage d'un point. Elle admet une forme probabiliste.

(i) Soit (E, \mathcal{O}) un **espace topologique**, (F, ||.||) un **espace normé**, P \subset E une partie de E et a $\in \overline{P}$ = Adh P (adhérence de P).

On dit que $f: E \mapsto F$ est une **fonction négligeable** pr à une fonction $g: E \mapsto F$ au voisinage de a ssi, $\forall \ \epsilon > 0$, il existe un **voisinage** \mathcal{V}_a de a tq:

(1)
$$||f(x)|| \le \varepsilon \cdot ||g(x)||, \quad \forall x \in P \cap \mathcal{V}_a$$
.

Deux notations classiques expriment cette propriété :

- (a) la notation de G.H. HARDY : $f \prec \prec g$;
- (b) la notation de E.G. LANDAU : f = o (g) (« petit zéro » de g).

La définition est parfois donnée en remplaçant dans (1) $a \in Adh P$ par $a \in U$, où U est un ouvert de E (ie $U \in \mathcal{O}$).

- (ii) Les propriétés de base sont les suivantes :
- (a) $f = o(g) \Rightarrow f = O(g)$ (si f est négligeable devant g, alors f est une **fonction dominée** par g);
 - (b) si F = \mathbf{R} , il existe un voisinage \mathcal{W}_a de a tq :

(2)
$$f = o(g) \Rightarrow \lim_{x \to a, x \in P} ||f(x)|| / ||g(x)|| = 0.$$

(iii) La notion possède une version probabiliste (cf ordres de convergence en probabilité). Ainsi, soit (Ω, \mathcal{T}, P) un espace probabilisé, $X = (X_n)_{n \in \mathbb{N}}$ et $Y = (Y_n)_{n \in \mathbb{N}}$ deux suites de va définies sur Ω et à valeurs dans un espace normé $(F, \|.\|)$. On suppose que Ω est un espace topologique et que \mathcal{T} est sa tribu borélienne.

On dit alors que X est une **suite négligeable en probabilité**, ou **P-négligeable**, devant Y ssi :

$$\begin{array}{c} \forall \ \epsilon > 0, \ \forall \ \eta > 0, \ \exists \ N_{\epsilon,\eta} \ tq \ : \\ n \geq N_{\epsilon,\eta} \ \Rightarrow \ P \ (||X_n|| \leq \epsilon \ ||Y_n||) \geq 1 \ \text{-} \ \eta. \end{array}$$

Comme précédemment, on utilise :

- (a) une **notation de type HARDY** : eg $X \prec \prec_p Y$ ou $X \prec \prec_p Y$;
- (b) ou, plus souvent, la **notation de LANDAU**, ie : $X = o_p(Y)$, ou $X = o_P(Y)$, ou $X_n = o_p(Y_n)$;
 - (c) ou encore $X_n = o_P(Y_n)$ (« petit zéro » en probabilité de LANDAU).

En particulier, si $Y_n = \psi$ (n) définit une suite de **vars** positives dégénérées (ψ (n) > 0, \forall n \in **N**) (cf **variable dégénérée**), on dit que $X_n = o_p$ (ψ (n)) ssi plim_n $\{X_n / \psi$ (n) $\} = 0$. On entend ici par **suite dégénérée** une suite $Y = (Y_n)_{n \in \mathbb{N}}$ qui est P-presque certainement à valeurs dans \mathbb{R}_+^* (suite de **variables presque certaines**).