JACOBIEN, JACOBIENNE (A3, A5, A7, C2)

(27 / 09 / 2020, © Monfort, Dicostat2005, 2005-2020)

Soit E et F deux espace vectoriels normés sur le corps K (avec K = R ou K = C). On suppose que Dim E = n et Dim F = m (espaces de dimensions finies), que U est un ouvert de E, que $a \in U$ et que $f : U \mapsto F$ est une application différentiable au point a (cf différentiabilité).

- (i) La **dérivée** f' (a) de f au point a, aussi notée D f (a), est une **application linéaire** continue, ie un élément de $\mathcal{L}(E, F)$. Elle admet, dans les **bases canoniques** resp de E et F, une **matrice** M = $(m_{ij})_{i=1,...,n}$ dont les éléments m_{ij} sont définis selon :
- (1) $m_{ii} = (\partial f_i / \partial x_i)(a), \quad \forall (i, j) \in N_m^* \times N_n^*.$

On dit que M est la matrice de C.G.J. JACOBI, ou la matrice jacobienne, ou simplement la jacobienne, associée à f au point $a \in U$.

M est souvent notée J_a (f), ou Jac_a (f), ou simplement J_a ou Jac_a s'il n'en résulte aucune ambiguïté.

On explicite souvent M au point $a \in U$ sous la forme $\{D (f_1, ..., f_m) / D(x_1, ..., x_n)\}$ (a₁,..., a_n), ou simplement (D f / D x) (a), (∂ f / ∂ x) (a) ou encore f '(a).

(ii) Si m = n, alors $M \in M_n$ (R) et l'on appelle **déterminant jacobien**, ou simplement **jacobien**, de f au point a le **déterminant** Dét M de M.

Ce nombre est aussi noté Dét J_a (f), ou Dét Jac_a (f), ou parfois même $|Jac_a|$ (f), ou encore $|J_a|$ f|, ou Dét f' (a), etc.

(iii) Les notions précédentes sont souvent utilisées dans l'étude des fonctions à plusieurs variables, en topologie différentielle, et dans les **changements de variables dans les intégrales**. Elles interviennent aussi dans les questions d'optimisation.