JEU STATISTIQUE SÉQUENTIEL (A14, G3, G7)

(06 / 05 / 2020, © Monfort, Dicostat2005, 2005-2020)

Dans un **problème statistique**, un plan d'échantillonnage (ou plan d'observation) séquentiel peut être donné a priori : il convient alors de définir une **procédure** de décision qui tienne compte de ce plan (cf **problème de décision séquentielle**).

- (i) Un jeu séquentiel à horizon fini (ou horizon tronqué), ou simplement jeu séquentiel fini (ou tronqué), consiste en la donnée (D. BLACKWELL M.A. GIRSHICK):
 - (a) d'un modèle statistique de base $(\Omega, \mathcal{F}, P_{\theta})_{\theta \in \Theta}$;
- (b) d'un espace d'observation, ou espace d'échantillonnage, $(\mathcal{X}, \mathcal{B})$ qui se présente sous la forme d'un produit défini par $\mathcal{X} = \Pi_{n=1}^N \mathcal{X}_n$, $\mathcal{B} = \bigotimes_{n=1}^N \mathcal{B}_n$ et $N \in \mathbf{N}^*$. Les ensembles sont souvent identiques : $\mathcal{X}_n = \mathcal{X}_0$ et $\mathcal{B}_n = \mathcal{B}_0$, \forall n = 1,..., N;
- (c) d'une variable aléatoire (en général, un échantillon observable) $X: \Omega \mapsto \mathcal{X}$ de la forme $X = (X_1, ..., X_N)$, dont la loi de probabilité est notée P_{θ}^{X} (pour tout $\theta \in \Theta$, P_{θ}^{X} est l'image de P_{θ} par X);
- (d) d'un ensemble de décisions finales, ou ensemble de décisions terminales, D dont l'élément générique d est appelé décision finale, ou décision terminale. On parle aussi d'action finale ou d'action terminale, auquel cas on note $a \in A$;
- (e) d'un ensemble Δ de fonctions δ : N_N x $\mathcal{X} \mapsto D$, avec N_N = {0, 1,..., N}. Ces fonctions sont tq :

(1)
$$(x', x'') \in \mathcal{X}^2$$
 et $x'' = x' \Rightarrow \delta(n, x') = \delta(n, x'')$,

pour tout $n \in \{1, ..., N\}$ et toute $\delta \in \Delta$;

(f) d'une famille Π de partitions Π de $\mathscr L$ qui vérifient :

$$\Pi\in\Pi\ \Rightarrow\ \Pi \text{ est de la forme }\Pi$$
 = {\$\Pi_0\$, \$\Pi_1\$,..., \$\Pi_N\$}; (2)

$$(x', x'') \in \mathcal{X}^2$$
 et $x'' = x' \implies \{x' \in \Pi_n \iff x'' \in \Pi_n\}.$

On appelle $\Delta' = \Pi \times \Delta$ l'ensemble des règles de décision séquentielles, ou ensemble des fonctions de décision séquentielles. Un élément $\Pi \in \Pi$ définit donc un plan d'échantillonnage séquentiel, ou plan séquentiel, dont tout élément Π_n est appelé région d'arrêt, ou zone d'arrêt ;

(g) d'une fonction de coût c : $N_N \times \mathcal{X} \mapsto R_+ tq$:

(3)
$$(x', x'') \in \mathcal{L}^2$$
 et $x'' = x' \implies c(n, x') = c(n, x'')$.

Autrement dit, le coût de l'échantillonnage ne dépend que des sous-échantillons effectivement réalisés.

Il est souvent commode d'indexer c comme une suite $c = (c_n)_{n=0,1,\dots,N}$ tq :

c₀ = 0 (coût nul en l'absence d'observation),
(4)
$$c_{N}: \mathcal{X} \mapsto \mathbf{R}_{+},$$

où $c_N = c_N (x_1, ..., x_N)$ est le coût associé à l'observation $x = (x_1, ..., x_N) \in \mathcal{X}$.

De même, on indexe δ selon $\delta = (\delta_0, \delta_1, ..., \delta_N)$;

(h) d'une fonction de perte $L: \Theta \times D \mapsto R_+$. La fonction de risque séquentielle associée à L s'écrit donc :

(5)
$$R_{\Pi}(\delta, \theta) = \sum_{n=0}^{N} \int_{\Pi(n)} \{c_n(x) + L(\theta, \delta(n, x))\} dP_{\theta}^{X}(x),$$

en notant $\Pi(n)$ pour désigner Π_n .

Un jeu séquentiel fini (de « taille » N) est souvent représenté par le symbole :

(6)
$$\mathcal{J}_{N} = \{(\mathcal{X}, \mathcal{B}, P_{\theta}^{X})_{\theta \in \Theta}, \Delta', R\}.$$

On le considère généralement comme « plongé » dans un jeu séquentiel infini (dénombrable) \mathcal{J}_{N^*} .

(ii) Il est possible d'étendre le cadre (classique) précédent dans un **contexte statistique** bayésien. On suppose donnée une **probabilité a priori** Π , définie sur une tribu \mathcal{B}_{Θ} de parties de Θ (cette probabilité est à distinguer des partitions Π de \mathcal{L}).

Dans ce cadre, on établit deux résultats importants :

- (a) quelle que soit la partition $\Pi \in \Pi$ et que soit la probabilité a priori Π sur \mathcal{B}_Θ , il existe une procédure de décision terminale $(\delta_n^*)_n$ qui est optimale pour la fonction de risque précédente. Autrement dit, il existe une suite de fonctions de décision terminales $(\delta_n^*)_{n \in \mathbb{N}}$ tq:
- (7) $\lim_{n} R_{\Pi}^{\Pi}(\delta_{n}^{*}) = \inf_{\delta \in \Delta} R_{\Pi}^{\Pi}(\delta)$ uniformément sur Π ,

où l'on a défini, au préalable, le **risque bayésien** (ou **risque de BAYES) séquentiel** selon la formule :

(8)
$$R_{\Pi}^{\Pi}(\delta) = \sum_{n=0}^{N} \int_{\Pi(n)} \int_{\Theta} \{c_n(x) + L(\theta, \delta(n, x))\} dP_{\theta}^{X}(x) d\Pi(\theta);$$

(b) quelle que soit la **probabilité a priori** Π sur \mathcal{B}_Θ , il existe un plan d'échantillonnage séquentiel Π^* qui est optimal. Il consiste en la procédure suivante : à chaque étape $N \in \mathbf{N}^*$, si l'étape suivante N+1 réduit le risque, on poursuit l'échantillonnage (sinon, on l'arrête).

La théorie de la décision séquentielle, basée sur des jeux séquentiels est aussi à l'origine d'un autre résultat important : l'identité de WALD.