LISSAGE EXPONENTIEL DOUBLE (N3, N6)

(27 / 10 / 2020, © Monfort, Dicostat2005, 2005-2020)

Comme le **lissage exponentiel simple**, le **lissage exponentiel double** est une méthode « empirique » « rapide » de prévision d'une série temporelle.

Soit $x = (x_t)_{t=1,...,T}$ une **série temporelle**, H un **horizon de prévision** à partir de l'instant T et $\alpha \in [0, 1[$.

(i) On appelle **lissage exponentiel double** la méthode consistant à évaluer (ou à prévoir) x_{T+H} à l'aide de la **prévision** $x_T^{\hat{}}$ (H) tq :

(1)
$$x_T^{(1)}(H) = a_1^{(1)}(T) + H \cdot a_2^{(1)}(T),$$

où $(a_1^{\hat{}}(T), a_2^{\hat{}}(T))$ est solution du problème de **programmation mathématique** suivant (moindres carrés « pondérés » à l'aide d'une suite géométrique) :

(2)
$$\inf_{(a(1), a(2)) \in \mathbb{R}^2} \sum_{\theta=0}^{T-1} \alpha^{\theta} (x_{T-\theta} - a_1 - a_2 \theta)^2$$
,

(où, par commodité, a(i) désigne a_i , i = 1,2, et \mathbb{R}^2 désigne \mathbb{R}^2) et s'explicite selon :

(3)
$$a_{1}^{\land}(T) = 2 S_{1}(T) - S_{2}(T), \\ a_{2}^{\land}(T) = \{(1 - \alpha) / \alpha\} \cdot \{S_{1}(T) - S_{2}(T)\},$$

avec:

$$S_{1}(T) = (1 - \alpha) \cdot \Sigma_{\theta=0}^{T-1} \alpha^{\theta} \cdot x_{T-\theta}$$
 (lissage simple),
(4)
$$S_{2}(T) = (1 - \alpha)^{2} \cdot \Sigma_{\theta=0}^{T-1} \alpha^{\theta} \cdot x_{T-\theta} + (1 - \alpha) \cdot S_{1}(T)$$
 (lissage double).

(ii) Il existe deux formules de « mise à jour » de la prévision :

(5)
$$a_1^{\hat{}}(T) = a_1^{\hat{}}(T-1) + a_2^{\hat{}}(T-1) + (1 - \alpha)^2 \{x_T - x_{T-1}^{\hat{}}(1)\},$$
$$a_2^{\hat{}}(T) = a_2^{\hat{}}(T-1) + (1 - \alpha)^2 \{x_T - x_{T-1}^{\hat{}}(1)\}.$$