LOI DE WILKS (C6, C7, F5)

(15 / 12 / 2019, © Monfort, Dicostat2005, 2005-2019)

La loi de WILKS est une loi de probabilité qui généralise la loi de FISHER-SNEDECOR. Elle est souvent utilisée en analyse multidimensionnelle.

(i) Soit (Ω, \mathcal{F}, P) un **espace probabilisé** et $W_1 : \Omega \mapsto M_{N(1)}(R)$ et $W_2 : \Omega \mapsto M_{N(2)}(R)$ deux **matrices** aléatoires indépendantes (cf **indépendance stochastique**), où l'on note N(i) pour désigner N_i (i = 1, 2). On suppose que :

(1)
$$\mathscr{L}(W_i) = \mathscr{W}_{N_i}(K, \Sigma)$$
 (loi de WISHART centrée), $\forall i = 1, 2$.

On appelle alors loi de S.S. WILKS la loi de la va $\Lambda : \Omega \mapsto [0, 1]$ définie par :

(2)
$$\Lambda = |W_2| / |W_1 + W_2|,$$

avec |A| = Dét A.

(ii) Cette loi, intervient souvent dans l'étude des échantillons multidimensionnels (cf loi d'échantillonnage, loi multidimensionnelle). Elle dépend ainsi du paramètre (N_1, N_2, Σ) .

A titre d'exemple, soit $\zeta:\Omega\mapsto \mathbf{R}^L$ un vecteur aléatoire de loi $\mathsf{P}^\zeta=\mathcal{N}_L\ (\mu,\ \Sigma)$ (loi normale multidimensionnelle) et de matrice de corrélation $\Gamma=C\ \zeta$. Soit $Z=(Z_1,...,Z_N)$ un échantillon iid comme une variable parente donnée ζ , et soit $\mathsf{R}_N=\mathsf{R}_N\ X$ sa matrice des corrélations empiriques (cf théorique, empirique). On partitionne alors ζ en deux groupes de variables (K variables ξ_k et G variables η_g , avec K+G=L) et l'on pose $\zeta=(\xi,\ \eta)$ conformément à cette partition. Enfin, on partitionne Γ et R_N comme ζ , ie :

(3)
$$\Gamma = \frac{(\Gamma_{\xi\xi} \Gamma_{\xi\eta})}{(\Gamma_{\eta\xi} \Gamma_{\eta\eta})}$$

$$R_{N} = \frac{(R_{\xi\xi} R_{\xi\eta})}{(R_{\eta\xi} R_{\eta\eta})}$$

Alors, pour tester l'hypothèse statistique d'absence de corrélation « croisée » :

(4)
$$H_0: \Gamma_{\xi\eta} = 0$$
,

une statistique de test appropriée est la statistique de S.S. WILKS, égale au rapport des variances généralisées suivant (cf aussi rapport des variances) :

(5)
$$\Lambda_N = |R_N| / (|R_{\xi\xi}| \cdot |R_{\eta\eta}|).$$

Si H_0 est vraie, ce rapport suit une loi de WILKS de paramètres K, G, N-G-1 et Σ .