LOI SOUS-EXPONENTIELLE (C6)

(05 / 11 / 2019, © Monfort, Dicostat2005, 2005-2019)

(i) Soit (Ω, \mathcal{F}, P) un **espace probabilisé** et $\xi : \Omega \mapsto \mathbf{R}$ une **vars** de **loi** P^{ξ} . On note F sa **fr** et f = dP^{ξ} / $d\lambda_1$ sa **densité** pr à la **mesure de LEBESGUE**.

On dit que P^{ξ} est une **loi sous-exponentielle** ssi l'équivalence asymptotique suivante :

(1) 1 - F" (x)
$$\sim_{x \to +\infty} 2 \cdot (1 - f(x))$$

est vérifiée.

(ii) Si l'on pose:

(2)
$$\psi(x, y) = 1 - \{(1 - F(x + y)) / (1 - F(y))\}, \forall (x, y) \in \mathbb{R}^2,$$

on dit que P^{ξ} est une **loi sous-exponentielle à droite** (resp une **loi sous-exponentielle à gauche**) ssi il existe un nombre réel $b \in \mathbf{R}$ (resp $a \in \mathbf{R}$) tq la première application partielle ψ (. , b) (resp la seconde application partielle ψ (a, .)) de ψ est monotone décroissante lorsque $y \to +\infty$ (resp lorsque $y \to -\infty$).

Une loi sous-exponentielle (à la fois) à droite et à gauche est dite **loi sous-exponentielle**, ou encore **loi de J.W. TUKEY** : la propriété vérifiée par P^{ξ} est parfois appelée **propriété de TUKEY**.