LOIS CONJUGUÉES (C6, G3)

(05 / 12 / 2019, © Monfort, Dicostat2005, 2005-2019)

Il existe plusieurs acceptions de « lois conjuguées ». La théorie bayésienne conduit à considérer la « transformation de BAYES », qui associe, sous certaines conditions, une loi a posteriori à toute loi a priori donnée. Ceci conduit à la notion suivante, la plus courante, de conjugaison des lois.

(i) Soit $\mathscr{Q}^X = (P_\theta^X)_{\theta \in \Theta}$ une famille de lois dominée par une mesure positive σ -finie μ , définie sur une tribu \mathscr{B} . Soit $(\Theta, \mathscr{B}_\Theta)$ un espace mesurable associé à Θ et Π l'ensemble de toutes les probabilités définies sur \mathscr{B}_Θ . On considère, par ailleurs, une famille de probabilités a priori \mathscr{Q} , définie sur \mathscr{B}_Θ . On suppose que $\Pi \in \Pi$ est une probabilité a priori dominée par une mesure positive σ -finie ν , définie sur \mathscr{B}_Θ , et l'on note $\pi = d\Pi / d\nu$ la dérivée de NIKODYM-RADON correspondante.

Le théorème de BAYES s'exprime ici selon :

(1)
$$q(\theta/x) = f(x, \theta) \pi(\theta) / \int_{\Theta} f(x, \theta) \pi(\theta) d\nu(\theta), \quad \forall (x, \theta) \in \mathcal{L} \times \Theta,$$

avec eg $\Theta \subset \mathbb{R}^{\mathbb{Q}}$. On note \mathbb{Q}^x la probabilité a posteriori associée à la densité q (. / x).

Par suite, la transformation de T. BAYES :

(2)
$$\beta: \mathcal{Q} \mapsto \Pi$$

est définie, $\forall x \in \mathcal{X}$, par la correspondance :

(3)
$$\beta$$
 (P) = Q^{x} .

On dit que β est une **conjugaison** sur \mathcal{Q} ssi :

(4)
$$\operatorname{Im} \beta = \beta(\mathcal{Q}) \subset \mathcal{Q}$$

(ie ssi \mathcal{Q} est stable par β).

Donc $\{\Pi \in \mathcal{Q}\} \Rightarrow \{Q^x \in \mathcal{Q}\}$ et l'on dit que Π et Q^x sont des **lois a priori conjuguées**, ou des **probabilités a priori conjuguées**, ssi \mathcal{Q} est une famille de probabilités **paramétrique**, ie ssi π et q (. / x) ont même forme analytique.

(ii) Un intérêt de la notion de conjugaison apparaît lorsque $\mathcal Q$ est une **famille stable par conjugaison**, ie lorsque les lois a priori et les lois a posteriori sont des lois de même type, ou de même nature.

1

A titre d'exemple, on montre que la famille des lois de DIRICHLET est conjuguée pr à la famille des lois multinômiales.