LOIS DE MORGAN (A2, B4, B5)

(05 / 12 / 2019, © Monfort, Dicostat2005, 2005-2019)

Les « lois » de MORGAN ne sont ni des lois de probabilité, ni des lois scientifiques, (cf aussi loi), mais des propriétés ensemblistes.

(i) Soit (E, \mathscr{A}) un **espace mesurable** et A = $(A_i)_{i \in I}$ une **famille** de **parties** (mesurables ou non) de E.

Les lois de A. de MORGAN se résument dans les formules du même nom :

$$(\bigcap_{i \in I} A_i)^c = \bigcup_{i \in I} A_i^c \qquad \text{(formule primale)},$$

$$(\bigcup_{i \in I} A_i)^c = \bigcap_{i \in I} A_i^c \qquad \text{(formule duale)},$$

dans lesquelles la complémentation se fait pr à E (cf complémentaire d'une partie).

(ii) En calcul des probabilités et en Statistique, (E, \mathcal{A}) est un espace probabilisable noté (Ω, \mathcal{F}) , et l'on considère une probabilité P définie sur \mathcal{F} .

Alors, la formule suivante (cf équation de POINCARÉ) :

(2)
$$P(\bigcap_{n \in \mathbb{N}} A_n) = 1 - P\{(\bigcap_{n \in \mathbb{N}} A_n)^c\} = 1 - P(\bigcup_{n \in \mathbb{N}} A_n^c),$$

valable pour toute suite $A = (A_n)_{n \in N}$ d'éléments (ou événements aléatoires) de \mathcal{T} , ainsi que l'inégalité de G. BOOLE suivante :

$$(3) \qquad P\left(\bigcup_{n \in \mathbf{N}} A_n^{c}\right) \leq \prod_{n \in \mathbf{N}} P\left(A_n^{c}\right),$$

conduisent à l'inégalité de BONFERRONI:

$$(4) \qquad P\left(\bigcap_{n \in \mathbb{N}} A_n\right) \geq 1 - \sum_{n \in \mathbb{N}} P\left(A_n^{c}\right).$$

Cette inégalité est souvent utilisée :

- (a) en théorie de l'estimation (cf estimateur ensembliste);
- (b) ou en théorie des tests (cf notamment principe de réunion et d'intersection).