MATRICE CENTRÉE (A3, C1, F1)

(05 / 12 / 2019, © Monfort, Dicostat2005, 2005-2019)

L'expression **matrice centrée** est parfois donné à une **matrice** de **données** dont les marges sont nulles. De telles matrices sont utilisées eg en **analyse des données** ou dans l'étude de la **régression linéaire**.

(i) Soit (Ω, \mathcal{F}, P) un **espace probabilisé** et $X : \Omega \mapsto M_{NK}(\mathbf{R})$ une matrice aléatoire (cf **matrice d'observation**) associée à N **observations** et K **variables**. On pose :

(1)
$$X = (x_{nk})_{(n,k)} = (X_1 /// X_N) = [x_1, ..., x_K],$$

où /// désigne les N-2 lignes intermédiaires entre les lignes X_1 et X_N .

Le vecteur \overline{X}_N des K moyennes empiriques des variables s'écrit (cf moyenne empirique) :

(2)
$$\overline{X}_N = e_N' X / e_N' e_N = [\overline{x}_1, ..., \overline{x}_K],$$

avec $\bar{x}_k = N^{-1} \sum_{n=1}^{N} x_{nk}$ (moyenne empirique de la variable d'indice k).

Le vecteur \bar{x}_K des N moyennes des observations s'écrit :

(3)
$$\bar{X}_K = X e_K / e_K' e_K = (\bar{X}_1 / / \bar{X}_N)',$$

avec $\bar{X}_n = K^{-1} \sum_{k=1}^K x_{nk}$ (moyenne empirique de l'observation d'indice n).

On appelle matrice centrée la matrice Y associée à X et dont le terme général est :

$$(4) y_{nk} = x_{nk} - \overline{X}_n - \overline{X}_k + \overline{X},$$

où $\overline{X} = e_N' X e_K / \{(e_N' e_N) (e_K' e_K)\}$ est la moyenne générale des termes x_{nk} .

- (ii) On montre que:
- (a) e_N ' Y=0 et Y $e_K=0$ (d'où e_N ' Y $e_K=0$), propriété qui explique la terminologie ;
- (b) la ${\color{red} matrice}$ de ${\color{red} dispersion}$ empirique S_N (des variables) de X s'écrit simplement sous la forme du produit Y' Y.

1