MATRICE TRIANGULAIRE (A3)

(09 / 06 / 2020, © Monfort, Dicostat2005, 2005-2020)

- (i) Soit $A \in M_n$ (**K**) une matrice carrée. On dit alors que :
- (a) A est une **matrice triangulaire supérieure**, ou une **matrice triangulaire** haute, ssi :

(1)
$$t_{ij} = 0$$
, $\forall (i, j) \text{ tq } j < i, \text{ ie } \forall (i, j) \in (N_n^*)^2$.

On note T_n^+ (**K**), ou parfois $T_n^>$ (**K**), l'ensemble des matrices triangulaires supérieures ;

- (b) A est une **matrice triangulaire inférieure**, ou **matrice triangulaire basse**, ssi sa transposée T' est une matrice triangulaire supérieure. On note T_n^- (**K**), ou parfois T_n^- (**K**), l'ensemble des matrices triangulaires inférieures.
- (ii) On montre que:

(a) si
$$(T_{\alpha})_{\alpha=1,\dots,k}$$
 est une **suite** finie tq $T_{\alpha}\in T_n^+$ (**K**), $\forall \ \alpha \in N_k^*$, alors $\Pi_{\alpha=1}^k T_{\alpha} \in T_n^+$ (**K**);

(b) si $T \in T_n^+(K) \cap R_n$ (K) (matrice triangulaire et matrice régulière), alors $T^{-1} \in T_n^+(K)$;

(c) si
$$T \in T_n^+(\mathbf{K})$$
, alors :

Dét T =
$$\prod_{i=1}^{n} t_{ii}$$
,

(2) Sp T = Diag T =
$$\{t_{ii}, ..., t_{nn}\}$$

(ensemble des éléments diagonaux de T) (cf spectre d'un opérateur) ;

(d) si
$$A \in M_n$$
 (R), $\exists P \in O_n$ (R) (matrice orthogonale) tq :

$$(3) \qquad P \ A \ = \ T \in T_{n}^{\ +} (\textbf{R}), \qquad \quad avec \ t_{ii} \geq 0, \ \forall \ i \in N_{n}^{\ \star},$$

et $\exists \ Q \in R_n$ (K) (matrice régulière, avec K = R ou C) tq :

Q⁻¹ A Q = S
$$\in$$
 T_n⁺ (**K**) (avec **K** = **R** ou **C**),
(4) Diag (Q⁻¹ A P) = Sp A.

De plus, si Sp A \subset **R**, alors Q \in R_n (**R**) et Q⁻¹ A Q \in T_n⁺ (**R**);

(e) si
$$T \in T_n^+(K)$$
 et Diag $T = \{t_{11}, ..., t_{nn}\}$, alors Diag $T^j = \{t_{11}^j, ..., t_{nn}^j\}$, $\forall j \in N^*$;

(f) si T \in T_n⁺ (**K**) \cap R_n (**K**) et si t^{ij} désigne le terme général de T⁻¹, alors t_{ii} tⁱⁱ = 1, \forall i \in N_n*;

(g) soit $A\in M_n$ (R) une matrice dont les **déterminants principaux** sont non nuls, ie tq :

(5) Dét
$$[(a_{11},...,a_{1i}) ::: (a_{i1},...,a_{ii})] \neq 0, \forall i \in N_n^*.$$

où $(a_{\alpha 1},...,a_{\alpha i})$ désigne la α -ème ligne de la matrice principale correspondante $(1 \le \alpha \le i)$ et ::: désigne des sauts de lignes de cette matrice. Alors,

(6)
$$A = S \cdot T$$
, avec $S = (s_{ij})_{(i,j)} \in T_n^-(\mathbf{R})$ et $T = (t_{ij})_{(i,j)} \in T_n^+(\mathbf{R})$.

De plus, si s_{ii} = 1 (resp si t_{ii} = 1), \forall i \in N_n^* , alors le couple (S, T) est unique ;

(h) soit $A \in M_n$ (**R**) une matrice tq Sp $A \subset \mathbf{R}$. Alors, $\exists \ P \in O_n$ (**R**) tq :

$$P' A P = T \in T_n^+(\mathbf{R}),$$

(7)
$$\operatorname{Sp} P = \operatorname{Sp} A.$$