MÉDIALE (C5, F3)

(19 / 12 / 2019, © Monfort, Dicostat2005, 2005-2019)

(i) Soit $\xi \in \mathcal{L}_{\mathbf{R}^+}$ (Ω, \mathcal{F}, P) une **va** non négative intégrable, dont la **lp** P^ξ admet pour **densité**, pr à la (**restriction** de la) **mesure de LEBESGUE** sur \mathbf{R}_+ , la fonction $f = dP^\xi / d\lambda_{/\mathbf{R}^+}$.

On définit une fonction numérique $x \in \mathbf{R}_+ \mapsto \gamma$ $(x) \in [0,1]$ selon (espérance mathématique relative « cumulée ») :

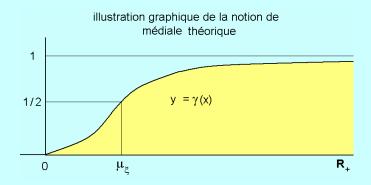
(1)
$$\gamma(x) = (\exists \xi)^{-1} \int_0^x t \cdot f(t) dt = (\exists \xi)^{-1} \int_{[0,x]}^1 t \cdot f(t) dt = (\exists \xi)^{-1} \cdot \exists (\mathbf{1}_{[0,x]} \cdot \xi).$$

On appelle alors **intervalle médial (théorique)** de ξ l'**ensemble** \mathscr{M} des solutions μ_{ξ} de l'équation en x suivante :

(2)
$$\gamma(x) = 1/2$$
.

Autrement dit, $\mathcal{M} = \{x \in \mathbf{R}_+ : \gamma(x) = 1/2\}.$

Si γ est strictement croissante, la solution de (2) est unique : on l'appelle (valeur) médiale (théorique), ou simplement médiale (théorique), de ξ (cf schéma cidessous).



- (ii) On montre que:
 - (a) si elle est unique, la médiale vérifie $\mu_{\xi} \ge Q_{1/2} \xi$ (médiane de ξ);
- (b) si i_G = 0 (coefficient de concentration nul), μ_ξ = $Q_{1/2}$ ξ (cf coefficient de GINI).
- (iii) La médiale théorique possède une analogue empirique. Si X est un **échantillon iid** de taille N distribué selon P^{ξ} , la **médiale (empirique)** m_N (X) se calcule en remplaçant P^{ξ} par la **loi empirique** P_N associée à X (cf **statistique naturelle**). Autrement dit, m_N (X) est une solution de l'équation en x :

1

(1)
$$g(x) = \{N^{-1} \sum_{n=1}^{N} \mathbf{1}_{[0,x]}(X_n)\} / \{N^{-1} \sum_{n=1}^{N} X_n\} = 1/2.$$

où le dénominateur N^{-1} $\Sigma_{n=1}^{N}$ X_n est la **moyenne empirique** \overline{X}_N de X. Ainsi, toute solution de l'équation $\{\Sigma_{n=1}^{N}$ $X_n\}^{-1}$ $\Sigma_{n=1}^{N}$ $\mathbf{1}_{[0,x]}$ (X_n) = 1/2 appartient à l'**intervalle médial** empirique.

(iv) Une extension directe de la notion consiste à définir des **« médiales » d'ordre p** ∈]0, 1[en remplaçant 1 / 2 par p dans (2).