MÉDIANE (C5, F3)

(19 / 12 / 2019, © Monfort, Dicostat2005, 2005-2019)

La **médiane** est un quantile particulier qui joue un rôle important en **Statistique** en tant que « valeur représentative » d'une distribution, d'une **variable aléatoire**, ou encore d'un ensemble d'observations : elle joue ainsi un rôle de **caractéristique** ou **paramètre** de **centralité**.

(i) Soit (Ω, \mathcal{F}, P) un **espace probabilisé** et $\xi : \Omega \mapsto \mathbf{R}$ une **vars**.

On appelle valeur médiane, ou valeur équiprobable, ou simplement médiane, (théorique) de ξ (ou de sa loi P^{ξ}) tout nombre réel, noté $Q_{1/2}$ ξ ou encore M_{ξ} , tq:

(1)
$$P(\xi \le Q_{1/2} \xi) \ge 1/2$$
 et $P(\xi \ge Q_{1/2} \xi) \le 1/2$,

ie tout **quantile** d'ordre 1 / 2 de P^{ξ} .

L'ensemble \mathcal{E} des valeurs $Q_{1/2}$ $\xi \in \mathbf{R}$ vérifiant (1), ie l'ensemble des valeurs médianes, est appelé **intervalle médian**, **partie médiane** ou encore **ensemble médian**, de P^{ξ} (ou de ξ , ou aussi de R).

Si F est la **fr** associée à P^{ξ} , la définition (1) s'écrit encore :

(2)
$$F(Q_{1/2} \xi) \ge 1/2$$
 et $F(Q_{1/2} \xi) \le 1/2$.

En particulier, si F est continue, $\mathcal E$ se réduit à un seul point : $Q_{1/2}$ ξ est alors unique. Dans ce cas, (1) ou (2) devient :

- (3) $F(Q_{1/2} \xi) = 1/2$.
- (ii) On montre que:

(a)
$$\forall \lambda \in \mathbf{R}$$
, on a $Q_{1/2}(\lambda \xi) = \lambda \cdot Q_{1/2} \xi$;

- (b) l'écart absolu moyen (théorique) E $|\xi \alpha|$ est minimum pr à α lorsque $\alpha = Q_{1/2} \xi$ (propriété comparable à celle de l'espérance pr à la variance) ;
- (c) si $\xi \in \mathcal{L}_{R}^{2}(\Omega, \mathcal{T}, P)$ est de carré intégrable, alors l'écart entre la médiane et l'espérance est borné par l'écart-type :

(4)
$$|Q_{1/2} \xi - E \xi| \le (2 \cdot V \xi)^{1/2}$$
.

(iii) Soit X =
$$(X_1,...,X_N)$$
 : $\Omega \mapsto \mathbf{R}^N$ un **échantillon iid** selon P^{ξ} .

On appelle valeur médiane, ou valeur équiprobable, ou simplement médiane, (empirique) de ξ (ou de X) la médiane $q_{1/2}$ X de la loi empirique P_N associée à X, ie aussi le quantile empirique d'ordre p = 1 / 2 de X. On a donc :

$$\in \, [X^{(N\,/\,2)},\, X^{((N\,/\,2)\,+\,1)}] \hspace{1cm} \text{si } N \in 2\,\, \textbf{N},$$

(5)
$$q_{1/2} X \text{ ou } m_N X$$

= $X^{((N/2)+1)}$ si $N \in 2 N + 1$.

où $X^{(.)} = (X^{(1)}, ..., X^{(N)})$ est l'échantillon ordonné (cf **statistique ordonnée**) associé à X.

La définition de la médiane empirique est donc analogue à celle de la médiane théorique : on remplace P^{ξ} (resp F) par la loi (resp fr) empirique P_N (resp F_N) associée à X dans (1) (resp (2)) (cf **statistique naturelle**).

La médiane n'est donc pas, en général, une **caractéristique** unique. Lorsque $N \in 2$ **N**, on remplace souvent, en pratique, $q_{1/2}$ X par la **moyenne** simple suivante (cf **interpolation**) :

(6)
$$q_{1/2}' X$$
 ou $m_N' X = (X^{(N/2)} + X^{((N/2)+1)}) / 2$,

ce qui permet de la définir de façon unique.

(iv) On peut aussi définir la **médiane empirique** $q_{1/2}$ X comme la « valeur » rendant minimum (pr à m) la fonction :

(7)
$$\varphi$$
 (m) = d₁ (X, m e_N) = $\Sigma_{n=1}^{N}$ |X_n - m|,

ie la distance associée à une norme usuelle de RN.

Ainsi, q_{1/2} X existe toujours, mais n'est pas nécessairement unique.

- (v) On montre que la médiane (théorique) de la médiane empirique $q_{1/2}$ X (considérée comme vars ou statistique) est la médiane (supposée unique) de la loi P^{ξ} , ie :
- (8) $Q_{1/2}(q_{1/2}X) = Q_{1/2}\xi$.
- (vi) La médiane empirique constitue un **estimateur** « naturel » de la médiane théorique.

Comme elle ne dépend pas des **valeurs extrêmes** de X dès que sa taille dépasse 2 (N > 2), elle joue un rôle particulier (cf aussi **forme légale**) :

- (a) en théorie de la **robustesse** : eg estimation robuste d'une **caractéristique** de **centralité**, ou d'un **paramètre de position** ;
 - (b) en théorie de la sensibilité : cf courbe de sensibilité, courbe d'influence.
- (vii) La notion de médiane, et notamment la médiane empirique, s'associe directement à celle de **régression quantilaire**, qui intervient dans l'étude du **modèle de régression (régression robuste**).
- (viii) On peut étendre la définition d'une médiane, eg :
- (a) à une $\operatorname{va} \xi : \Omega \mapsto \operatorname{E}$ à valeurs dans un **ensemble** ordonné (E , \leq), dès lors que la **Ip** ou la **fr** sont définies (cf **relation d'ordre**).

(b) à un vecteur aléatoire $\xi:\Omega\mapsto \textbf{R}^K$ (cf médiane multidimensionnelle).