MÉTHODE DE QUENOUILLE (C5, H)

(03 / 05 / 2020, © Monfort, Dicostat2005, 2005-2020)

La **méthode de QUENOUILLE** est une méthode générale de réduction du **biais** d'un **estimateur** biaisé.

(i) Soit $(\Omega, \mathcal{F}, P_{\theta})_{\theta \in \Theta}$ un modèle statistique, $(\mathcal{X}_0, \mathcal{B}_0)$ un espace d'observation et $\xi : \Omega \mapsto \mathcal{X}_0$ une va dont l'une des lois possibles est P_{θ}^{ξ} (avec $\theta \in \Theta$).

On observe un **échantillon iid** $X = (X_1, ..., X_N)$ (ie constitué de **copies** indépendantes de la **variable parente** ξ), ce qui permet de définir le **modèle d'échantillonnage** à distance finie $(\mathcal{X}, \mathcal{B}, P_{\theta}^{X})_{\theta \in \Theta}$, avec $\mathcal{X} = \mathcal{X}_{0}^{N}$, $\mathcal{B} = \mathcal{B}_{0}^{\otimes N}$ et $P_{\theta}^{X} = (P_{\theta}^{\xi})^{\otimes N}$.

Soit $g:\Theta\mapsto \mathbf{R}^L$ une fonction **mesurable** et $\tau=g$ (θ) un **paramètre** d'intérêt. On note, $\forall\ N\in\mathbf{N}^*,\ t_N:\mathcal{X}\mapsto\mathbf{R}^L$ une fonction mesurable définissant un **estimateur** T_N (obtenu eg par la **méthode du maximum de vraisemblance** ou par la **méthode des moments**) de τ . La **suite** des estimateurs $(T_N)_{N\in\mathbf{N}^*}$ est donc fondée sur la suite $(t_N)_n\in\mathbf{N}^*$.

Enfin, suppose que T_N est un estimateur biaisé de τ (ie E T_N - $\tau \neq 0$).

- (ii) La **méthode de M.H. QUENOUILLE**, ou parfois **méthode de M.H. QUENOUILLE J.W. TUKEY**, (en anglais : « *jack-knife method* ») consiste à définir :
 - (a) des pseudo-estimateurs, ou pseudo-valeurs :

(1)
$$D_{Nn} = N T_N - (N-1) T_{N-1,n}$$
,

expression dans laquelle $T_{N\text{-}1,n}$ désigne, $\forall n \in N_N^*$, l'estimateur de τ de même « type » que T_N mais basé sur le (N-1)-échantillon déduit de X en lui otant la coordonnée X_n : cet estimateur est donc basé sur une fonction mesurable $t_{N\text{-}1,n}: \mathscr{L}_{N\text{-}1,n}\mapsto \textbf{R}^L$, où $\mathscr{L}_{N\text{-}1,n}=\Pi_{\alpha\neq n} \mathscr{L}_{\alpha}$ et $\mathscr{L}_{\alpha}=\mathscr{L}_0$, $\forall \alpha$;

(b) l'estimateur de M.H. QUENOUILLE comme moyenne arithmétique simple des pseudo-estimateurs :

(2)
$$J_N = N^{-1} \sum_{n=1}^{N} D_{Nn}$$
.

Autrement dit, on calcule la moyenne des estimateurs de même type que t_N (ou T_N), mais basés sur N-1 observations X_n , puis on calcule l'estimateur résultant selon (2). La procédure précédente revient donc à remplacer l'estimateur d'ensemble T_N par une **combinaison linéaire convexe** d'estimateurs partiels D_{Nn} .

- (iii) Les principales propriétés de l'estimateur obtenu sont les suivantes :
- (a) sous certaines **conditions de régularité**, le biais de J_N est moindre que celui de T_N . Ainsi, lorsque $\Theta = \mathbf{R}^L$, $g = id_\Theta$ et L = 1, si le biais de t_N (X) = T_N est de la forme :

1

(3)
$$B_{\theta} t_{N}(X) = \Sigma_{\alpha=1}^{+\infty} b_{\alpha}(\theta) / N^{\alpha}$$
,

avec $b_1(\theta) \neq 0$, on montre que le biais de J_N est de la forme :

(4)
$$B_{\theta} J_{N} = \sum_{\alpha=2}^{+\infty} c_{\alpha}(\theta) / N^{\alpha}$$
.

Autrement dit, si $B_{\theta} T_N = O(1/N)$ (grand zéro), on a $B_{\theta} J_N = O(1/N^2)$;

- (b) sous des hypothèses assez larges, J_N suit asymptotiquement une loi normale (cf normalité asymptotique) dont la matrice de covariance peut être estimée par :
- (5) $(V J_N)^\# = N^{-1} (N-1)^{-1} (D_{Nn} J_N) (D_{Nn} J_N)';$
 - (c) dans le cas scalaire (ie $\Theta = \mathbb{R}^L$, L = 1 et g = id $_{\Theta}$), on montre que :

(6)
$$u_N = N^{1/2} \{(J_N - \theta) / s_N\} \rightarrow \mathcal{S}_{N-1}$$
 (loi de STUDENT à N - 1 dl),

où
$$s_N^2 = (N - 1)^{-1} \sum_{n=1}^{N} (D_{Nn} - J_N)^2$$
;

- (d) la méthode peut s'appliquer à l'estimateur de QUENOUILLE lui-même, donc s'itérer ad libitum. Si J_N possède un biais d'ordre N^{-1} , alors l'itéré d'ordre j de J_N , soit $J_N^{(j)}$, possède un biais d'ordre $N^{-(j+1)}$.
- (iv) Plusieurs variantes ou extensions ont été étudiées. Par exemple :
 - (a) le cas où les coordonnées X_n de X ne forment pas une **suite iid** selon P^{ξ} ;
- (b) de même, si N = H . K, on peut calculer des pseudo-estimateurs d'ordre K sur les H groupes extraits de X (partition de X en H sous-échantillons).
- (v) La procédure du « **couteau de Jack** » (ou **« couteau suisse »**) est aussi utilisée en **Statistique non paramétrique** et dans les problèmes de **robustesse**. Ainsi :
- (a) l'estimation de la **variance** théorique σ^2 par la variance d'échantillon S_N^2 est souvent incorrecte (biais) lorsque l'**hypothèse** de **normalité** $P^\xi = \mathcal{N}_K(\mu, \Sigma)$ de la population n'est pas vérifiée ;
- (b) de même, si \mathscr{T} désigne une **famille** de **fr** (associée à la famille des lois initiales) et $\phi: \mathscr{T} \mapsto \mathbf{R}$ une **fonctionnelle**, alors un estimateur « naturel » de T est T[#] = ϕ (F_N), où F_N est la **fr empirique** associée à l'**échantillon iid** X. La méthode de QUENOUILLE permet d'estimer le biais de T[#], ie E T[#] T = E ϕ (F_N) ϕ (F), ainsi que son écart-type, sans avoir à définir un **modèle paramétrique**.

Les pseudo-valeurs peuvent encore être utilisées pour détecter des **aberrations** X_n ainsi que leur influence sur T_N (estimateur initial) ou sur J_N (estimateur de QUENOUILLE) (cf **courbe d'influence**).