MÉTHODE DE LA FONCTION MUETTE (A5, C2, C4)

(25 / 10 / 2019, © Monfort, Dicostat2005, 2005-2019)

La **méthode de la fonction « muette »** est une méthode du **calcul des probabilités** fondée sur le **théorème de transfert des mesures**. Elle s'avère commode, dans certains cas, notamment lors d'un **changement de va**.

- (i) Soit (Ω, \mathcal{F}, P) un **espace probabilisé** et $\xi : \Omega \mapsto \mathbf{R}^K$ un **vecteur aléatoire** de **loi** P^{ξ} . On définit un nouveau vecteur aléatoire $\eta : \Omega \mapsto \mathbf{R}^K$ en posant :
- (1) $\eta = \varphi(\xi)$ ou $\eta = \varphi \circ \xi$,

expression dans laquelle $\varphi : \mathbf{R}^K \mapsto \mathbf{R}^K$ est une application mesurable.

Par définition, la loi de probabilité de η est la mesure image de P^{ξ} par ϕ , ie :

- (2) $P^{\eta} = \varphi(P^{\xi}) = P^{\varphi \circ \xi}$.
- (ii) Lorsque ϕ n'est pas un **homéomorphisme** de classe C^1 d'un **ouvert** U de \mathbf{R}^K dans ϕ (U) $\subset \mathbf{R}^K$, il est cependant possible de calculer la loi P^η .

En effet, la méthode de la fonction muette permet ce calcul en deux étapes :

- (a) écriture de l'espérance mathématique d'une fonction mesurable arbitraire de η , dite fonction muette, $g: \phi(\textbf{R}^K) \mapsto \textbf{R}^K$ (cf application mesurable) ie :
- (3) E g $(\phi(\xi)) = \int g(\phi(x)) dP^{\xi}(x)$;
 - (b) réécriture de (3) sous forme d'une **intégrale** tq :
- (4) Eg(η) = Ego η = $\int g(y) dQ(y)$.
- (iii) Lorsque ces étapes sont réalisables, la solution du problème n'est autre que P^{η} =
- Q. En effet, g étant arbitraire, on peut toujours choisir $g = \mathbf{1}_B$, $\forall B \in \mathcal{B}(\mathbf{R}^K)$. Ce résultat est parfois appelé **théorème de la fonction muette**.