MÉTHODE DES MOINDRES CARRÉS QUASI-GÉNÉRALISÉS (H3, J1)

(01 / 09 / 2020, © Monfort, Dicostat2005, 2005-2020)

La méthode des moindres carrés quasi-généralisés est une méthode d'estimation qui est une adaptation de la méthode des moindres carrés généralisés au cas où la matrice de dispersion Σ du vecteur de perturbation u n'est pas connue (paramètre importun).

(i) On suppose ainsi que $\Sigma = \sigma^2 \ \Omega$ dépend de σ^2 et aussi de L < N - K paramètres indépendants $\lambda = (\lambda_1,...,\ \lambda_L)'$, soit $\Omega = \Phi\ (\lambda)$, où $\Phi: \mathbf{R}^L \mapsto M_N\ (\mathbf{R})$ est une fonction matricielle dont la forme analytique est supposée connue.

Le modèle étudié est donc (dans l'espace des états (X, y)) :

(1)
$$y = Xb + u$$
, avec $Eu = 0$, $Vu = \sigma^2 \cdot \Phi(\lambda)$.

La méthode des moindres carrés quasi-généralisés procède en deux étapes :

- (a) estimation de λ à l'aide des **résidus** u_n des moindres carrés ordinaires appliqués au modèle (1) (dans lequel $\Omega = I_N$) (cf **méthode des moindres carrés ordinaires**). On note λ l'estimateur de λ obtenu ;
- (b) estimation de (b, σ^2) en remplaçant Ω par $\Omega^{\hat{}} = \Phi$ ($\lambda^{\hat{}}$) dans les formules résultant de la **méthode des mcg**, ie :

$$b_{q}^{\ \ } = \{X' (\Omega^{\ \ \ })^{-1} X\}^{-1} X' (\Omega^{\ \ \ })^{-1} y,$$

$$(2) \qquad (\sigma^{2})_{q}^{\ \ \ } = (u^{\ \ \ })' (\Omega^{\ \ \ })^{-1} u^{\ \ \ } / (N - K), \quad \text{avec } u_{q}^{\ \ \ \ } = y - X b_{q}^{\ \ \ \ },$$

où $\Omega^{\hat{}}$ est supposée être une matrice définie positive.

(ii) En général, E $b_q^{\ }\neq b$ (estimateur biaisé) (cf **biais**). Cependant, si $\Omega^{\ }$ est une fonction paire de u et si la **loi** \mathscr{L} (u) de u est une **loi absolument continue** ainsi qu'une **loi symétrique** (pr à 0), alors (N.C. KAKWANI) E $b_q^{\ }= b$.

Sous certaines conditions de régularité, on établit :

- (a) la convergence en probabilité (si plim_N $\lambda^{\hat{}} = \lambda$):
- (3) $plim_N (b_q^- b) = 0$;
 - (b) la convergence en loi :

$$(4) \quad \mathscr{L}(\mathsf{N}^{1/2}\,(\mathsf{b_q}^{^{^{^{}}}}\!-\!\mathsf{b})) \,\to\,_{\mathsf{N}\,\to\,+\infty}\,\,\mathscr{N}_{\mathsf{K}}\,(\mathsf{0},\,\Xi),$$

avec:

(5)
$$\Xi = \sigma^2 \cdot \text{plim}_{N} \{X' \Omega^{-1} X / N\}^{-1}$$

(limite simple si X est certaine) (cf convergence simple).

Les **tests** usuels effectués sur le modèle linéaire sont donc asymptotiques. On remplace notamment Ξ par :

(6)
$$\Xi_q^{\ \ } = (\sigma^2)_q^{\ \ } \cdot \{N^{-1} \cdot X' (\Omega^{\ \ })^{-1} X\}^{-1}$$

dans les formules {(4),(5)} précédentes.