MODE (C5, F3)

(19 / 12 / 2019, © Monfort, Dicostat2005, 2005-2019)

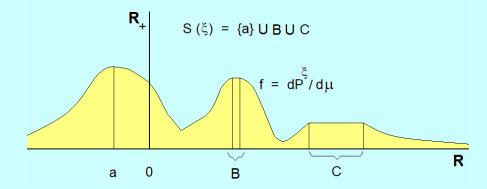
La notion de « valeur la plus probable » pour une va, pour une statistique ou pour un paramètre est à l'origine des concepts de maximum de vraisemblance ou de régression modale (cf aussi régression). Il existe un concept analogue pour une loi de probabilité.

(i) Soit (Ω, \mathcal{F}, P) un **espace probabilisé** et $\xi : \Omega \mapsto \mathbf{R}^K$ un **vecteur aléatoire** réel de loi P^{ξ} . On suppose que P^{ξ} admet pr à la **mesure de LEBESGUE** λ_K une **densité** (ou **dérivée de NIKODYM-RADON**) $f = d^{\xi} / d\lambda_K$ (modèle dominé).

On appelle **partie modale**, ou **ensemble modal**, associé(e) à P^{ξ} (resp à ξ , resp à f) une **partie** S (ξ) \subset **R**^K tq f prend sa valeur maximale (maximum absolu) en tout point de S (ξ), ie tq (cf schéma ci-après) :

(1)
$$S(\xi) = \{x \in \mathbf{R}^K : f(x) \ge f(y), \forall y \in \mathbf{R}^K \}.$$

représentation graphique d'un ensemble modal (K = 1)



On appelle **valeur modale** de P^{ξ} (resp de ξ , resp de f) tout point de S (ξ).

Si Card S (ξ) = 1 (ie si S (ξ) se réduit à un seul point de \mathbf{R}^K), noté S ξ (ou S (ξ), ou Mo (ξ), etc), on l'appelle **mode**, ou **valeur modale**, ou **valeur la plus probable**, ou encore **valeur dominante** (en probabilité), associée à P^{ξ} (resp à ξ , resp à f). Dans ce cas, ξ (resp P^{ξ}, resp f) est dite **variable unimodale** (resp **loi unimodale**, resp **densité unimodale**).

(ii) Les notions d'ensemble modal, de valeur modale et de mode précédentes sont des notions absolues : on parle alors eg de **mode absolu**.

On définit aussi un **ensemble modal (relatif)** de P^{ξ} (resp de ξ , resp de f) comme partie S^* (ξ) \subset \mathbf{R}^K tq f prend une valeur maximale (ie possède un maximum relatif) en tout point d'une partie stricte $B \subset Supp$ f qui vérifie S^* (ξ) $\subset B$ (cf support d'une fonction). Si Card S^* (ξ) = 1, l'élément S^* $\xi \in S^*$ (ξ) est dit **mode relatif** de ξ (resp de P^{ξ} , resp de f).

Une variable ξ (resp une loi P^{ξ} , resp une densité f) possédant plusieurs modes (relatifs) est appelée variable multimodale (resp loi multimodale, resp densité multimodale). Cette situation est fréquente dans le cas où P^{ξ} est un mélange de lois.

- (iii) Si f est différentiable (cf **différentiabilité**), un **mode (relatif)** de P^{ξ} (resp de ξ , resp de f) est solution de l'équation :
- (2) D f(x) ou f'(x) = 0.

Si P^{ξ} admet une **fr** F deux fois différentiable, un **mode (relatif)** est solution de l'équation :

- (3) $D^2 F(x)$ ou F''(x) = 0.
- (iv) Les notions précédentes sont théoriques. Si $X = (X_1, ..., X_N)$ est un **échantillon** iid constitué de **vecteurs aléatoires** indépendants et équidistribués selon P^{ξ} , on peut définir une notion de **valeur modale empirique** :
- (a) soit à partir d'un **histogramme**, associé à la **fr empirique** F_N définie par X, et d'une **partition** de \mathbf{R}^K ;
- (b) soit lorsque K=1, à partir de la fr empirique F_N définie par X. La valeur en question peut alors être définie comme point d'inflexion de la ligne brisée joignant les points $(X_n, F_N(X_n))$, où $n \in N_N^*$.
- (v) On montre que:
- (a) Si f est unimodale de mode S ξ (cf loi unimodale), si X est un échantillon iid selon P^{ξ} et si f_N^{\sim} est l'estimateur de la densité f obtenu par la méthode du noyau, alors le mode S_N de f_N^{\sim} constitue un estimateur de S ξ . Sous les conditions du théorème de NADARAYA, on a (convergence presque sûre) :
- (4) $S_N \rightarrow_{N\rightarrow +\infty} S \xi$ (P-p.s.);
- (b) La convergence presque sûre précédente est encore vraie (sous des hypothèses ad hoc) si f est estimée par la **méthode des fonctions orthogonales** ;
 - (c) si f est unimodale de mode S ξ et si $\xi \in L_{\mathbb{R}}^2$ (Ω, \mathcal{F}, P), alors :
- (4) $(S \xi E \xi)^2 \le 3 \cdot V \xi$.
- (vi) Le mode se définit de façon analogue pour une **loi discrète** P^{ξ} (ie admettant une densité f par à une **mesure discrète**) ou, plus généralement, pour une loi P^{ξ} admettant une densité f pr à une **mesure positive** μ définie sur $\mathcal{B}(\mathbf{R}^K)$, la définition initiale s'appliquant alors.

(vii) La notion de mode concernait des **variables quantitatives** (variables numériques).

Elle peut aussi se définir pour une **variable qualitative**. Ainsi, si (Ω, \mathcal{F}, P) est un **espace probabilisé**, $(\mathcal{K}, \mathcal{G})$ un **espace probabilisable** (**espace d'observation**) tq $\mathcal{K} = (k_m)_{m \in \mathbb{N}^*}$ est un ensemble (au plus) dénombrable de **modalités** et $\kappa : \Omega \mapsto \mathcal{K}$ une **va** qualitative (simple), l'**ensemble modal** (resp le **mode**) de P^{κ} (ou de κ) est l'ensemble des éléments $S \kappa$ de \mathcal{K} correspondant aux plus fortes probabilités (resp à la plus forte probabilité) $P([\kappa = k_m])$.

La notion peut alors s'étendre à un G-uple de variables qualitatives.

(viii) La notion de mode peut être définie à partir de la loi P^{ξ} elle-même.

Une **partie modale** associée à P^{ξ} est alors une partie S (ξ) \subset \textbf{R}^K tq :

(5)
$$P^{\xi}(S(\xi)) = \sup \{P^{\xi}(B) : \forall B \in \mathcal{B}(\mathbf{R}^{K})\},$$

où $\mathcal{B}(\mathbf{R}^{K})$ désigne la **tribu borélienne** de \mathbf{R}^{K} .

- S (ξ) peut ne pas être une partie « régulière » de $\mathcal{B}(\mathbf{R}^K)$ ou de \mathbf{R}^K : partie compacte, partie convexe, etc.
- (ix) Dans certains **situations statistiques**, il peut être nécessaire de tester si une loi de probabilité est une **loi unimodale**, eg pour détecter un **mélange légal** (cf **test d'unimodalité**).