MOYENNE MOBILE (N2-N3, N9)

(03 / 05 / 2020, © Monfort, Dicostat2005, 2005-2020)

Le calcul d'une moyenne mobile revient à effectuer un filtrage linéaire particulier.

Ce filtrage sert eg à estimer la **composante** non saisonnière d'un **processus** ou d'une **série temporelle**.

La notion de moyenne mobile est à l'origine de notions tq celle de **processus de** moyenne mobile ou de **processus autorégressif de moyenne mobile**.

(i) Soit $x=(x_t)_{t=1,...,T}$ une série temporelle scalaire dans laquelle T est un **groupe** additif ordonné, $\lambda \in S_p$ (simplexe de \mathbf{R}^p) et $(h_1,...,h_p)$ une suite tq $h_1 \leq ... \leq h_p$.

On appelle (opération de) moyenne mobile de longueur p, pondérée selon λ et de pas $(h_1,...,h_p)$ l'application qui associe à x la série temporelle $y=(y_t)_{t\in U}$ définie par la moyenne arithmétique pondérée :

(1)
$$y_t = \sum_{j=1}^p \lambda_j x_{t+h(j)}$$
,

où l'on suppose que $U \subset T$ et que $t+h_i \in U, \ \forall \ j \in N_p^*.$ On note par commodité h(j) pour désigner les h_j .

L'application $x \mapsto y$ ainsi définie est notée eg $\mathcal{M}_p(\lambda)$ ou \mathcal{M}_p .

Ainsi, lorsque $\lambda = p^{-1}$ $e_p \in S_p$ (simplexe de \mathbf{R}^p) et $h_j = j$, $\forall j \in N_p^*$, on obtient la moyenne mobile simple $x_t \mapsto y_t = p^{-1} \sum_{j=1}^p x_{t+j}$.

- (ii) On montre que:
- (a) \mathcal{M}_p est une opération linéaire (cf **opérateur linéaire**), puisque y_t est **combinaison linéaire convexe** des termes $x_{t+h(i)}$:
 - (b) les **invariants** par \mathcal{M}_p sont les fonctions affines de t, ie :
- (2) $x_t = a + b t \Rightarrow \mathcal{M}_p(x_t) = x_t, \forall t \in U$;
 - (c) si $h_i = j$, $\forall j \in N_p^*$, on a l'équivalence :
- (3) $\mathcal{M}_p(x_t') = \mathcal{M}_p(x_t'') \Leftrightarrow d_t = x_t' x_t'' \text{ vérifie la propriété Pr (d),}$

où Pr (u) = {u est une série temporelle périodique de **période** p et tq \mathcal{M}_p (u_t) = 0, \forall t \in U}. Par série périodique de période p, on signifie que : $u_{t+kp} = u_t$, \forall k \in **Z**.

(iii) En pratique, la méthode « empirique », ou « spontanée », de **lissage par moyenne mobile** d'une série temporelle possède deux inconvénients :

1

- (a) elle « perd » des observations (observations extrêmes) lorsque les séries sont finies et de faible « champ temporel » (Card $T << +\infty$);
- (b) elle peut conduire à l'effet de E.E. SLUTZKY. En effet, les points de retournement de y peuvent être décalés (avec avance ou retard) pr à ceux de x, ce qui fausse la prévision fondée sur y (en termes de datation, donc aussi en termes d'amplitude) (cf opérateur avance).
- (iv) On peut définir, de façon analogue, une notion de moyenne mobile pour des séries dont le **temps** est de différents types : eg temps discret, temps continu.

Ainsi, dans le cas où $x = (x(t))_{t \in T}$ est en temps continu, $T \subset \mathbf{R}$ (doté de sa **mesure de LEBESGUE** λ_1), la moyenne mobile peut s'écrire sous la forme :

(1)'
$$y(t) = \int_{U} \lambda(h) \cdot x(t+h) d\lambda_1(h),$$

où l'on suppose que $\lambda: U \mapsto \mathbf{R}_+$ est une **fonction de poids** (ie tq $\lambda \ge 0$ et $\int_U \lambda$ (h) d λ_1 (h) = 1), $U \subset T$ et que $t + h \in U$, $\forall h \in \mathbf{R}$.

- (v) Pour définir une **transformation mobile** du type précédent, il est aussi possible d'utiliser :
- (a) d'autres types de moyennes : moyenne potentielle (eg moyenne géométrique, moyenne harmonique), φ-moyenne, etc ;
- (b) ou d'autres types de « centralité » : eg la médiane, qui porte vers la notion de médiane mobile.