MOYENNE POTENTIELLE (C5, F3)

(31 / 01 / 2020, © Monfort, Dicostat2005, 2005-2020)

La notion de **moyenne** potentielle généralise les notions de **moyenne** usuelles : elle est basée sur la notion de « fonction puissance ». Une notion comparable est celle de **moyenne** exponentielle (dans laquelle la puissance est remplacée par l'exponentiation).

(i) Soit $\xi: \Omega \mapsto \mathbf{R}_+$ une **vars** non négative tq $\xi \in L^p$ (Ω , \mathcal{T} , P) (puissance p-ième intégrable, avec $p \in \mathbf{R}_+^*$) et dont la **loi de probabilité** est P^{ξ} .

On appelle moyenne dans L^p , ou moyenne potentielle d'ordre p, (théorique) le nombre μ_p (ξ) défini par (cf moyenne dans L^p) :

(1)
$$(\mu_p(\xi))^p = \int x^p dP^{\xi}(x).$$

Cette définition suppose que les opérations d'élévation à la puissance p ont un sens.

(ii) Soit $X = (X_1, ..., X_N)$ un **échantillon aléatoire** constitué de vars non négatives $X_n : \Omega \mapsto \mathbf{R}_+$ et $p \in \mathbf{N}^*$ (eg N **copies** de la **variable parente** ξ précédente).

On appelle moyenne potentielle d'ordre p (empirique) associée à X la statistique X_N (p) tq :

(2)
$$(X_N(p))^p = N^{-1} \sum_{n=1}^N X_n^p$$
.

La formule (2) se déduit donc de (1) en y remplaçant P^{ξ} par la **loi empirique** P_N associée à X.

(iii) On peut étendre les notions précédentes à des variables signées $X_n:\Omega\mapsto \mathbf{R}$ en utilisant la notion de valeur absolue et en posant :

(1)'
$$(\mu_p(\xi))^p = \int |x|^p dP^{\xi}(x),$$

(2)'
$$(X_N(p))^p = N^{-1} \sum_{p=1}^{N} |X_p|^p$$
.

(iv) La moyenne potentielle généralise les moyennes classiques : moyenne arithmétique (p = 1), moyenne géométrique (p \rightarrow 0+) ou moyenne harmonique (p = -1).

La notion admet, comme cas limite, la **statistique extrême** (supérieure) de X, ie X_n ($+\infty$) = $X^{(N)}$ (où $X^{(N)}$ est la dernière coordonnée de l'échantillon ordonné de façon croissante associé à X) (cf **statistique des extrêmes**, **statistique d'ordre**, **valeur extrême**).

(v) Une moyenne potentielle peut être définie, de façon analogue, pour une **variable qualitative** valuée.