OPÉRATEUR ADJOINT (A3, A4)

(16 / 12 / 2019, © Monfort, Dicostat2005, 2005-2019)

Soit E un **espace pré-hilbertien** muni d'une **forme hermitienne** positive (non dégénérée) h et f un **opérateur** dans E. On pose h $(x, y) = (x \mid y)$ (**produit scalaire** de x et y), \forall $(x, y) \in E^2$.

- (i) On appelle opérateur adjoint de f un opérateur dans E, noté f*, tq:
- (1) $(f(x) | y) = (x | f^*(y)), \forall (x, y) \in E^2$.

On montre que :

- (a) si f^* existe, il est unique et $(f^*)^* = f$;
- (b) si f et g admettent pour adjoints resp f* et g*, alors :

$$(f + g)^* = f^* + g^*$$

- (2) $(\lambda \cdot f)^* = \overline{\lambda} \cdot f^*, \ \forall \ \lambda \in \mathbf{C} \ (\text{où } \overline{\lambda} \text{ est le complexe conjugué de } \lambda),$ $(f \circ g)^* = g^* \circ f^*;$
 - (c) si f est continu et admet f* pour adjoint, alors f* est continu ;
- (d) si E est un **espace de HILBERT**, tout opérateur continu dans E admet un adjoint (cf **continuité**).
- (ii) On dit que l'opérateur f dans E est un **opérateur auto-adjoint** ssi son adjoint f^* existe et que f^* = f. On montre alors que :
- (a) si f est auto-adjoint, l'application $(x, y) \mapsto (f(x) \mid y) = \overline{h}(f(y) \mid x) = (f(y) \mid x)^{cc}$ est une **forme hermitienne** sur E (on note z^{cc} le complexe conjugué de z);
- (b) si f admet un adjoint f^* , alors $f + f^*$ et i $(f f^*)$ sont auto-adjoints (i = imaginaire pure).
- (iii) On appelle **opérateur positif** (resp **opérateur non dégénéré**) un opérateur autoadjoint f dont la forme hermitienne associée est positive (resp non dégénérée).