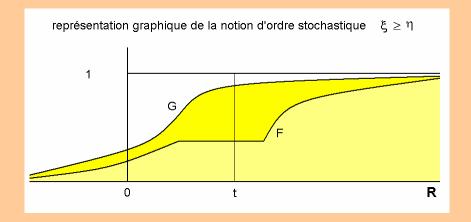
ORDRE STOCHASTIQUE (C1, C4, C6, E)

(24 / 03 / 2020, © Monfort, Dicostat2005, 2005-2020)

(i) Soit (Ω, \mathcal{F}, P) un **espace probabilisé** et $(\xi, \eta) : \Omega \mapsto \mathbb{R}^2$ un **couple aléatoire** réel dont les **fr marginales** sont resp notées F et G.

On dit que:

- (a) ξ est stochastiquement plus grande que (ou domine en probabilité) η ssi (cf schéma ci-dessous) :
- (1) $F(t) \leq G(t), \forall t \in \mathbf{R}.$



L'interprétation graphique suggère que les masses de probabilité de F sont « déportées » vers la droite pr à celles de G, donc que les valeurs de ξ sont plus grandes que celles de η .

On note alors $\xi \ge \eta$ (ou $F \le G$);

- (b) ξ est stochastiquement strictement plus grande que (ou domine strictement en probabilité) η ssi il existe une partie non négligeable B $\in \mathcal{B}_R$ tq (cf partie négligeable) :
- (2) $F \leq G$ (au sens précédent) et F(t) < G(t), $\forall t \in B$.

On note F < G ou $\xi > \eta$.

Par suite, sur l'ensemble des va admettant une fr propre (ie une **fr marginale**), la relation (2) définit un **ordre stochastique**, qui n'est généralement pas un ordre total ;

(c) on dit que ξ et η sont **stochastiquement égales** ssi $\xi \geq \eta$ et $\eta \geq \xi$ (**égalité stochastique**). Dans ce cas, F = G et les lois propres (ie marginales) sont identiques, ie $P^{\xi} = P^{\eta}$, λ -p.s..

- (iv) On peut alors définir la notion de **suite stochastiquement croissante** (resp **décroissante**). Si $X = (X_n)_n \in N$ est une suite de **vars**, X est stochastiquement croissante ssi :
- (3) $\alpha < \beta \implies F_{\beta} \geq F_{\alpha}$,

en notant F_n la fr propre de X_n , $\forall~n\in\textbf{N}.$

(ii) Etant donné deux **échantillons** X et Y indépendants entre eux, tq X est iid selon la fr F et Y est iid selon la fr G (cf **échantillon iid**), on peut tester l'**hypothèse de base** $H_0: F = G$ contre une **alternative ordonnée** $H_a: F \ge G$.

A titre d'exemple, si G est de la forme $G = F^{\alpha}$, le problème revient à tester H_0' : $\alpha = 1$ contre H_{α}' : $\alpha < 1$, ce qui peut s'effectuer à l'aide des **fr empiriques** F_N (associée à X) et G_N (associée à Y), ou de **statistiques** qui peuvent s'en déduire.