PHI-MOYENNE, φ-MOYENNE (C5, F3)

(31 / 01 / 2020, © Monfort, Dicostat2005, 2005-2020)

La notion de moyenne (arithmétique) d'une va (espérance) ou d'un échantillon (moyenne empirique) se généralise en celle de phi-moyenne.

(i) Soit ξ une **vars** de loi P^{ξ} et $\phi: \mathbf{R} \mapsto \mathbf{R}$ une fonction mesurable (cf **application mesurable**), monotone (ie soit croissante, soit décroissante), et tq la va ϕ o ξ soit intégrable :

(1)
$$\mathsf{E}\,\varphi\,(\xi) = \int \varphi\,(\xi\,(\omega))\,\mathsf{dP}\,(\omega) = \int \varphi\,(x)\,\mathsf{dP}^\xi\,(x) < \infty.$$

On appelle **phi-moyenne**, ou ϕ -moyenne, (théorique) de ξ (ou de sa loi) le nombre réel μ_0 défini selon :

(2)
$$\varphi(\mu_{\varphi}) = \mathsf{E} \varphi(\xi)$$
.

La φ-moyenne est aussi notée $E_φ ξ$.

En particulier, si φ = id_R (identité de R), alors μ_{φ} = E ξ (espérance mathématique de ξ).

- (ii) Un cas particulier important est la **moyenne potentielle**, ou **p-moyenne**. En effet, si $p \in \mathbf{R}_{+}^{*}$ et si ϕ (x) = \mathbf{x}^{p} , \forall x \in \mathbf{R}_{+} , la moyenne potentielle d'ordre p ainsi définie par (2) est notée μ_{p} . En particulier :
 - (a) si p = -1, on obtient la moyenne harmonique de ξ :
- (3) $\mu_{-1} = (E |\xi|^{-1})^{-1} = H \xi$;
 - (b) si p = 0, on obtient la moyenne géométrique de ξ :
- (4) $\mu_0 = \lim_{p \to 0^+} \mu_p = \exp(E \text{ Log } |\xi|) = G \xi$;
 - (c) si p = 1, on obtient l'espérance mathématique de ξ :
- (5) $\mu_1 = E \xi = \mu_1'$ (moment algébrique simple d'ordre 1);
- (d) si p = 2, on obtient la racine carrée de la **moyenne quadratique** de ξ (cf **moyenne dans L**^p, avec p = 2) :
- (6) $\mu_2 = (E \xi^2)^{1/2}$.
- (iii) De même, si a > 0 et ϕ (x) = a^x , \forall x \in **R**, on appelle **moyenne exponentielle** (en base a) de ξ le nombre μ_0 tq :

1

(7) $a^{\mu\phi} = E a^{\xi}$, ou $\mu_{\phi} = \log_a (E a^{\xi})$.

(iv) Une propriété importante des moyennes potentielles μ_p = (E ξ^p)^{1/p} (\forall p \in \mathbf{R}_+ *) s'exprime dans l'inégalité suivante :

(8)
$$\alpha < \beta \implies \mu_{\alpha} < \mu_{\beta}$$

(ie la fonction p $\mapsto \mu_p$ est croissante).

Dans ce qui précède, on peut remplacer ξ par une variable centrée tq ξ - ϵ (ou par une variable centrée pr à un paramètre de position C ξ = α de ξ) (cf centralité).

(iv) Etant donné un N-échantillon iid $X=(X_1,...,X_N)$ issu de la variable parente ξ , on définit parallèlement une notion « empirique » analogue à chacune des précédentes, en remplaçant dans les formules la loi théorique P^ξ par la loi empirique P_N . Ceci fournit un estimateur « naturel » de cette notion théorique (cf statistique naturelle).

Ainsi, la **phi-moyenne**, ou ϕ -moyenne, (resp moyenne potentielle, resp moyenne exponentielle) **empirique** est définie selon :

(9)
$$\varphi(M_{\varphi}) = N^{-1} \sum_{n=1}^{N} \varphi(X_n) = \int \varphi(x) dP_N(x),$$

où P_N désigne la loi empirique associée à X. La va M_ϕ ainsi définie constitue souvent un estimateur naturel, généralement biaisé (cf **inégalité de JENSEN**), de la ϕ -moyenne théorique μ_ϕ .

(v) Une moyenne harmonique peut être définie, de façon analogue à ce qui précède, pour une **variable qualitative** valuée.