PRÉVISION DES MOINDRES CARRÉS ORDINAIRES (H3, J1)

(05 / 05 / 2020, © Monfort, Dicostat2005, 2005-2020)

(i) Soit:

(1)
$$\eta = \xi' b + \varepsilon$$
, avec $E \varepsilon = 0$, $V \varepsilon = \sigma^2$,

un modèle de régression multiple linéaire défini dans l'espace des variables (ξ , η), et « observé » dans l'espace des observations (X, Y) selon :

(2)
$$y = X b + u$$
, avec E $u = 0$, $V u = \sigma^2 \cdot I_N$,

où $X \in M_{NK}(\mathbf{R})$ et y prend ses valeurs dans \mathbf{R}^N .

On attribue au vecteur ξ des variables exogènes une valeur $\xi_0 \in \mathbf{R}^K$, on pose :

(3)
$$\eta_0 = \xi_0' b + \varepsilon_0$$
, avec $E \varepsilon_0 = 0$, $V \varepsilon_0^2 = \sigma^2$,

et l'on veut prévoir la valeur η_0 associée à ξ_0 .

On appelle alors:

- (a) **prédicteur (conditionnel)** de η_0 sachant ξ_0 toute **vars** (ou toute **statistique** réelle scalaire) $\eta_0^* = t(X, y)$;
 - (b) erreur de prévision la vars $e_0^* = \eta_0^* \eta_0$.

Comme η_0 est **inobservable**, on considère que sa prévision équivaut à l'**estimation** de sa **moyenne** (ou **espérance**) E $\eta_0 = \xi_0$ ' b.

On appelle alors:

- (a) prédicteur des moindres carrés ordinaires (mco), le prédicteur de C.F. GAUSS A.A. MARKOV, (conditionnel, ie sachant ξ_0) de E η_0 , ie le « prédicteur » défini par :
- (4) $\eta_0^{\ \ } = \xi_0' b^{\ \ },$

où b[^] est l'estimateur des mco de b dans le modèle (2);

- (b) erreur de prévision (des mco) la va $\varepsilon_0^{\hat{}} = \eta_0^{\hat{}} \eta_0$.
- (ii) On montre que:
 - (a) l'erreur de prévision est nulle en moyenne (quel que soit $\xi_{0})$:

1

(5) $E(\eta_0^{-1} - \eta_0) = E \epsilon_0^{-1} = 0$;

(b) les variances de $\eta_0^{\ \ }$ et $\epsilon_0^{\ \ \ }$ sont, resp :

(6)
$$V \eta_0^{\hat{}} = \sigma^2 \xi_0' (X' X)^{-1} \xi_0,$$

$$V \varepsilon_0^{\hat{}} = \sigma^2 \{1 + \xi_0' (X' X)^{-1} \xi_0\};$$

(c) si $\mathscr{L} = \{\eta_0^\# = c' \ y : \forall \ c \in \mathbf{R}^N \}$ désigne la classe des prédicteurs linéaires (pr à y) de E η_0 et $\mathscr{C} = \{\eta_0^\# \in \mathscr{L} : E \ \eta_0^\# = E \ \eta \}$ la classe des prédicteurs linéaires sans biais de E η_0 , alors $\eta_0^{\hat{\ }}$ est le prédicteur dans \mathscr{C} dont la variance est minimale, ie tq :

(7)
$$E(\eta_0^{'} - \eta_0)^2 \leq E(\eta_0^{\#} - \eta_0)^2$$
, $\forall \eta_0^{\#} \in G$;

(d) si u ~ \mathcal{N}_N (0, σ^2 I_N) (**loi normale multidimensionnelle** centrée), alors $\varepsilon_0^{\hat{}}$ ~ \mathcal{N}_1 (0, V $\varepsilon_0^{\hat{}}$), où V $\varepsilon_0^{\hat{}}$ est donnée en (6).

Un intervalle de confiance (conditionnel), bilatéral et symétrique, de η_0 au seuil 1 - $\alpha \in]0, 1[$ est fondé sur la propriété :

(8)
$$(V \, \varepsilon_0^{'})^{-1/2} \, (\eta_0^{'} - \eta_0) = \{(\eta_0^{'} - \eta_0) / ((\sigma^2)^{'} \, (1 + \xi_0' \, (X' \, X)^{-1} \, \xi_0)\}^{1/2} \sim \mathcal{S}_{N-K}$$

(loi de STUDENT à N - K degrés de liberté).

(iii) Si le modèle considéré n'est pas linéaire, ie si :

(9)
$$\eta = f(\xi, b) + \varepsilon$$
, avec $E \varepsilon = 0$, $V \varepsilon = \sigma^2$,

est observé selon :

(10)
$$y = F(b) + u$$
, avec E $u = 0$ et $V u = \sigma^2 \cdot I_N$,

on peut suivre la même démarche que précédemment :

(a) on pose
$$\eta_0 = f(\xi_0, b) + \epsilon_0$$
;

(b) on estime E η_0 à l'aide du prédicteur des mco (non linéaires) $\eta_0^{\hat{}}$ = f (ξ_0 , $b_f^{\hat{}}$), où $b_f^{\hat{}}$ est l'estimateur des mco non linéaires de b.

Cependant, comme $b_f^{\hat{}}$ est en général biaisé (E $b_f^{\hat{}} \neq b$), $\eta_0^{\hat{}}$ est aussi biaisé.