PRINCIPE DE RÉFLÉCHISSEMENT (N2)

(21 / 01 / 2020, © Monfort, Dicostat2005, 2005-2020)

Le **principe de réfléchissement** est une méthode utilisée pour démontrer certaines égalités de la **théorie des processus**, eg pour simplifier l'étude d'une **promenade aléatoire**.

(i) Soit X = {(Ω , \mathcal{F} , P), (\mathcal{X} , \mathcal{B}), (X_t)_{t \in T}} un processus stochastique réel scalaire (ie (\mathcal{X} , \mathcal{B}) = (\mathbf{R} , \mathcal{B}_R)), en temps continu (T = \mathbf{R}_+). On suppose que X est un processus à accroissements indépendants et que ses trajectoires t \mapsto X_t (ω) (où $\omega \in \Omega$) sont continues en probabilité sur T (cf processus continu en probabilité). Etant donné x \in \mathbf{R} , on définit, pour tout segment S = [0, S] \subset T, la variable aléatoire $\tau : \Omega \mapsto$ S selon :

(1)
$$\tau(\omega) = \inf\{s \in S : X_s(\omega) - X_0(\omega) = x\}.$$

Comme les accroissements X_s - X_0 sont, \forall s \geq τ (ω), indépendants des accroissements X_s - X_0 , \forall s < τ (ω), on ne change pas (**principe de réfléchissement**) la nature (ie les propriétés probabilistes) de X en procédant au **« réfléchissement » de la trajectoire** s \mapsto X_s (ω) - X_0 (ω) pr à la droite Δ_x d'équation s \mapsto f (s) = x, ie en remplaçant, \forall s \geq τ (ω), la portion de trajectoire s \mapsto X_s (ω) - X_0 (ω) par la portion de trajectoire symétrique de la précédente pr à Δ_x .

Si l'on définit les évènements emboîtés suivants :

$$A_x = \{ \omega \in \Omega : \sup_{s \in S} X_s - X_0 \ge x \},$$

$$(2) \qquad B_x \ = \ \{\omega \in \Omega : X_S \text{ - } X_0 \geq x\} \ \subset \ A_x \ ,$$

$$C_x = \{\omega \in \Omega : X_S - X_0 = x\} \subset B_x$$
,

le principe de réfléchissement (D. ANDRÉ) se traduit par la relation probabiliste :

$$(3) \qquad P(A_x \cap B_x^c) = P(A_x \cap (B_x \setminus C_x)) = P(B_x \setminus C_x).$$

Par suite, comme P $(A_x \cap B_x)$ = P (B_x) , et du fait de la continuité des trajectoires, on obtient (par addition membre à membre) :

(4)
$$P(A_x) = P(B_x) + P(B_x) \setminus C_x = 2 \cdot P(B_x)$$

(ii) Soit X un processus du mouvement brownien (avec T = \mathbf{R}_+) et Y = $(Y_n)_{n \in \mathbf{N}^*}$ un processus réel scalaire qui est une suite iid selon une loi symétrique. On pose x > 0, $\varepsilon > 0$ et $Z_N = \sum_{n=1}^N Y_n$. Alors :

1

(a) l'inégalité P ($h_N \max \Sigma_{n=1}^N Z_n \ge x$) ≤ 2 . P ($Z_N \ge x$) implique :

(5)
$$P(\sup_{t \le s} (X_t - X_0) \ge x) \le 2 \cdot P(X_s - X_0 \ge x), \quad \forall s \in T.$$

Donc X est presque sûrement à trajectoires continues.

(b) de même, l'inégalité P (Z_N) + 2 . (1 - $\Sigma_{n=1}^N$ P (Y_n e) \leq (1/2) P (h_N max $_{n=1}^N$ $Z_n \geq x$) implique :

(6)
$$P(\sup_{t \le s} (X_t - X_0) \ge x) = 2 \cdot P(X_s - X_0 \ge x);$$

(c) par suite, on a encore, pour toute trajectoire continue de X (et avec les mêmes notations qu'en (i)) :

(7)
$$P(A_x \cap B_x) = P(B_x),$$

$$P(A_x \cap B_x^c) = P(A_x \cap (B_x \setminus C_x)) = P(B_x \setminus C_x).$$

Si τ (ω) est le **premier instant** t pour lequel X_t - X_0 = x, les variations de X après τ (ω) sont indépendantes de celles réalisées avant τ (ω) et leur signe est équidistribué. Autrement dit, dès que $t > \tau$ (ω), les probabilités sont invariantes lorsqu'on procède au **réfléchissement** de X pr à la ligne Δ_x d'équation y = f(t) = x.

(iii) Dans le contexte d'une **promenade aléatoire**, on considère un N-uple (ou **suite**) $X = (X_1, ..., X_N)' \in \{-1, +1\}^n$ tq $N = N^+ + N^-$, où $N^+ \in N_N^* = \{1, ..., N\}$ représente le nombre d'indices i tq $X_i = +1$ et N^- représente le nombre d'indices j tq $X_i = -1$, ie :

(8)
$$N^{+} = Card \{i \in N_{N}^{*} : X_{i} = 1\},$$

$$N^{-} = Card \{j \in N_{N}^{*} : X_{i} = -1\}.$$

On pose:

$$S_0 = 0$$

(9)
$$S_{\alpha} = \sum_{i=1}^{\alpha} X_{i}, \quad \forall \alpha \in \{1, ..., N-1\},$$

 $S_{n} = N^{+} - N^{-}.$

Autrement dit, la différence $S_{\alpha} = \alpha^+ - \alpha^-$, dans laquelle $\alpha^+ = \text{Card } \{i \in N_{\alpha}^* : X_i = +1\}$ et $\alpha^- = \text{Card } \{j \in N_{\alpha}^* : X_j = -1\}$, représente la différence entre le nombre de termes égaux à +1 et le nombre de termes égaux à -1 figurant dans les α premières coordonnées. On a ainsi :

(10)
$$\Delta S_{\alpha} = S_{\alpha} - S_{\alpha-1} = X_{\alpha} \in \{-1, +1\}.$$

On appelle:

(a) **chemin polygonal**, ou **ligne polygonale**, associé(e) à la suite X la fonction affine par morceaux passant par les points du **graphe** de coordonnées $(X_{\alpha}, S_{\alpha})_{\alpha=0,1,\dots,N}$.

(b) chemin de longueur n allant de l'origine (0, 0) à un point $(n, y) \in \mathbf{N}^*$ x \mathbf{N}^* le graphe de toute fonction affine par morceaux passant par les points (α, S_α) (où $\alpha \in N_n^*$) et tq $S_n = y$. Il existe donc 2^n tels chemins.

Par suite:

(11)
$$n = n^{+} + n^{-},$$
$$y = n^{+} - n^{-}.$$

Il existe $C_n^{n+} = K(n, y)$ façons d'obtenir n^+ termes X_i égaux à +1 dans la suite X. Si les égalités (11) ne sont pas vérifiées par un point donné (n^*, y^*) , on peut poser $K(n^*, y^*) = 0$: dans ce cas, il existe exactement K(n, y) chemins distincts allant de l'origine à n'importe quel point (n, y).

Le **principe de réfléchissement** s'exprime comme suit. Soit A = (n, y) et B = (p, z) deux points situés sur un chemin et tq $y \in \mathbb{N}^*$, $z \in \mathbb{N}^*$, $n \in \mathbb{N}$, $p \in \mathbb{N}^*$ et p > n. On appelle **réfléchissement** du point A pr au point (n, 0), ou pr à l'ensemble $\{(n, 0) : n \in \mathbb{N}\}$, le point symétrique s (A) = (n, -y).

On montre que le nombre de chemins allant de A vers B et « touchant » l'ensemble $\{(n,0): n \in \mathbf{N}\}$, ou traversant cet ensemble, est égal au nombre de chemins allant de S (A) vers B. Par « **traversée** », on entend l'existence de chemins comportant des points (q, -t) tq n < q < p et $t \in \mathbf{N}^*$.