PROBABILITÉ CYLINDRIQUE (A4, A5, B1)

(30 / 08 / 2020, © Monfort, Dicostat2005, 2005-2020)

Soit $(\mathcal{X}, \mathcal{O})$ un **espace vectoriel topologique** localement convexe (cf **partie convexe**), muni de la **tribu borélienne** $\mathcal{B} = \sigma(\mathcal{O})$, $\mathcal{X}' = \mathcal{E}(\mathcal{X}, \mathbf{R})$ le **dual topologique** de \mathcal{X} , V un sous-espace de dimension finie de \mathcal{X}' et $\mathcal{B}(V)$ la **tribu engendrée** par les fonctions $x \mapsto f(x)$ lorsque f parcourt V.

On appelle:

(a) algèbre cylindrique l'ensemble :

$$(1) \qquad \mathscr{A} = \bigcup_{\mathsf{V}} \mathscr{B}(\mathsf{V}).$$

On montre que cette algèbre engendre la **tribu cylindrique** $\mathscr L$ sur $\mathscr L$;

(b) (mesure de) probabilité cylindrique (de J.T. SCHWARTZ), ou (mesure de) probabilité faible, ou mesure faible, (au sens de I.E. SEGAL) sur les tribus $\mathcal{B}(V)$ un système cohérent P de probabilités P^V définies sur ces tribus.

Autrement dit, cette cohérence s'entend au sens suivant (cf additivité, additivité des fonctions d'ensemble) :

(b)₁ P est une fonction additive et non négative sur \mathcal{A} ;

(b)₂ P est tq P (
$$\mathcal{X}$$
) = 1;

(b)₃ P est σ -additive sur chaque tribu $\mathcal{B}(V)$.