PROCESSUS DE COMPTAGE (C, N2)

(02 / 11 / 2019, © Monfort, Dicostat2005, 2005-2019)

(i) Soit $(T_n)_{n \in \mathbb{N}}$ une **suite** strictement croissante de **vars** positives (ie à valeurs dans \mathbb{R}_+).

On appelle **nombres d'instants antérieurs** à l'instant $t \in \mathbb{R}_+$ le nombre aléatoire :

(1)
$$N_t = \sum_{n \in \mathbb{N}} \mathbf{1}_{|T(n) \leq t|}, \forall t \in \mathbb{R}_+^*,$$

avec $N_0 = 0$ (où T(n) désigne T_n).

On appelle processus de comptage, ou fonction aléatoire de comptage, le processus stochastique $N = (N_t)_{t \in R^+}$ ainsi défini.

(ii) A titre d'exemple, on montre que le processus de comptage (1) associé à un processus ponctuel de POISSON (cf processus de POISSON) est un processus à accroissements indépendants.

De plus, \forall (s, t) \in \mathbb{R}_{+}^{2} tq s < t :

(2)
$$\Delta_{t-s} N_s = N_t - N_s \sim \mathcal{Q}(\theta (t-s))$$
 (loi de POISSON de paramètre θ (t-s)).

Par suite, E ($\Delta_{t-s} N_s$) = θ (t-s).

(iii) Soit $X = (X_t)_{t \in T}$ un processus stochastique en **temps** discret (ie tq eg $T \subset \mathbf{N}$ ou $T \subset \mathbf{Z}$) et soit $B \in \mathcal{B}$ (**tribu de parties** sur l'**espace des états** \mathcal{L} de X) une « région » donnée. Le nombre de fois où le processus apparaît dans la région B avant l'instant $C \subset T$ est :

(3)
$$N_t = \sum_{s \le t} \mathbf{1}_{[X(s) \in B]}, \forall t \in T.$$

Ce nombre définit un processus stochastique scalaire entier (ie à variables entières) $N = (N_t)_{t \in T}$ appelé **processus de comptage** associé à X.