PROCESSUS INTÉGRABLE (A5, N2, N12)

(09 / 06 / 2020, © Monfort, Dicostat2005, 2005-2020)

La notion de **processus intégrable** peut recevoir trois significations. Ces « contenus » correspondent à la notion générale d'**intégrabilité**.

(i) Processus intégrable et intégrale (au sens de la théorie de la mesure et de la théorie de l'intégration).

Soit X = {(Ω , \mathcal{T} , P), (\mathcal{X} , \mathcal{B}), (X_t)_{t ∈ T}} un **processus stochastique** vectoriel dans lequel (\mathcal{X} , ||.||) est un **espace normé** (eg un **espace de BANACH**) et ||.|| désigne la **norme** sur \mathcal{X} .

On dit que X est un **processus intégrable** ssi la **famille** $(X_t)_{t \in T}$ est constituée de **va** X_t qui sont toutes intégrables (au sens de l'**espérance**), ie :

(1)
$$E ||X_t|| < +\infty$$
, $\forall t \in T$.

La notion peut se généraliser, eg (cf moyenne) :

- (a) intégrabilité d'ordre p > 1, avec $E ||X_t||^p < +\infty$, $\forall t \in T$;
- (b) φ-intégration, E φ ($||X_t||$) < +∞, $\forall t \in T$.
- (ii) Processus intégrable et intégration (cf processus intégré).

Considéré conjointement avec un processus Y de même type, (X, Y) intervient dans la définition de la notion de coïntégration (cf aussi processus autorégressif de moyenne mobile intégré).

(iii) Processus intégrable et intégrale stochastique.

Soit X un processus vectoriel réel (ie $\mathcal{X} = \mathbf{R}^{K}$) en temps continu (avec T = [a, b] \subset **R**) et st. un mode de convergence stochastique (cf convergence stochastique).

On dit alors que X est eg un **processus intégrable (au sens de LEBESGUE)** ssi, selon le mode st. considéré, il existe une $va Z : \Omega \mapsto R^K$ tq l'intégrale (vectorielle) de LEBESGUE suivante (cf **mesure de LEBESGUE**) :

(1)
$$Z = \operatorname{st.} \int_a^b X_t dt$$
 (ou $Z = \operatorname{st.} \int_a^b X_t d\lambda_1 (t)$)

existe (ie $||Z|| < +\infty$).

Cette notion d'intégrabilité est relative à l'ensemble T du temps.

Si, plus généralement, T est muni d'une **structure mesurable** (ie d'une **tribu de parties** \mathcal{B}_T) et si v est une **mesure positive** définie sur \mathcal{B}_T , on définit une notion d'**intégrabilité** plus large sur T. La formule (1) devient alors :

(2)
$$Z = \operatorname{st.} \int_{T} X_{t} dv (t).$$