PRODUIT D'ESPACES MESURABLES (OU PROBABILISABLES) (A5, B1, C4, N) (26 / 12 / 2018)

Le concept d'espace mesurable produit, propre à la théorie de la mesure, conduit à celui d'espace probabilisable produit, qui intervient dans de nombreuses questions de calcul des probabilités, de théorie des processus ou de Statistique : processus stochastiques, échantillonnage, théorie séquentielle, méthodes de décisions adaptatives, expérimentation progressive, etc.

(i) Soit $((E_t, \mathcal{A}_t))_{t \in T}$ une **famille** d'espace mesurables (ou d'espaces probabilisables) quelconques, indexée par un ensemble (quelconque) T. Soit $E = \Pi_t$ $\in T$ E $_t$ le **produit** cartésien des E_t et $E^S = \Pi_{S \in S}$ E $_s$ le produit cartésien d'une sousfamille, indexée par $S \subset T$, de la famille $(E_t)_{t \in T}$.

Si S est fini (ie si Card S < + ∞), on note $\mathscr{A}^{\otimes S} = \bigotimes_{s \in S} \mathscr{A}_s$ la **tribu** produit des A_s . On appelle **cylindre de base A** $\in \mathscr{A}^{\otimes S}$ dans $E^T = E$ la partie $C_A = \operatorname{pr}^{-1}_S (A)$ de E^T (où pr_S désigne la **projection** canonique $E^T \mapsto E^S$) (cf **cylindre d'un espace mesurable produit**).

L'ensemble de ces cylindres C_A engendre une tribu sur E^T appelée **tribu produit** des tribus \mathcal{A}_t : on note alors cette tribu $\mathcal{A}^{\otimes T} = \bigotimes_{t \in T} \mathcal{A}_t$.

On appelle espace mesurable produit ou espace probabilisable produit des espaces (E_t , \mathcal{A}_t) (avec $t \in T$) le couple (E^T , $\mathcal{A}^{\otimes T}$).

- (ii) Lorsque T est fini, on retrouve la définition usuelle de la tribu produit $\mathcal{A}^{\otimes T}$ (produit fini de tribus de parties).
- (iii) La tribu produit $\mathcal{A}^{\otimes T}$ peut aussi être définie comme plus petite tribu sur $E^{T} = E$ rendant mesurables les **projections** pr_S de E^{T} sur les produits cartésiens (finis) E^{S} .