QUEUE D'UNE LOI, D'UNE VARIABLE ALÉATOIRE (C1, C4, C9)

(17 / 01 / 2020, © Monfort, Dicostat2005, 2005-2020)

La queue d'une variable aléatoire ou d'une loi de probabilité (queue de distribution) correspond, schématiquement, à une région (de l'espace des valeurs) qui est complémentaire d'une partie centrale de cette va (ou de cette lp) (cf centralité). Elle est notamment associée à l'étude des valeurs extrêmes, à une région critique d'un test, à l'existence de moments, etc.

(i) Soit (Ω, \mathcal{F}, P) un espace probabilisé, $(\mathcal{X}, \mathcal{B})$ un espace mesurable et $\xi : \Omega \mapsto \mathcal{X}$ une va dont la loi de probabilité est P^{ξ} et $C \in \mathcal{B}$ une partie centrale associée à P^{ξ} (ou à ξ).

On appelle **queue**, ou **extrémité**, de P^{ξ} (ou de ξ) la partie C^{c} complémentaire de C.

On peut donc définir une **famille** de queues relatives à une même loi P^{ξ} lorsque la partie centrale C varie.

(ii) On dit que P^{ξ} est une **loi à queue épaisse** lorsque, C étant une partie centrale donnée, on a :

(1)
$$P^{\xi}(C^{c})/P^{\xi}(C) >> 0$$
.

Ceci est le cas eg de la loi de CAUCHY \mathcal{C} (a, b).

De même, on dit qu'une loi P^{ξ} possède une queue C^{c} (globalement) plus épaisse que celle d'une loi Q^{ξ} ssi :

(2)
$$P^{\xi}(C^{c}) > Q^{\xi}(C^{c}).$$

Ceci implique que les **supports** de ces lois sont inclus dans le même espace de valeurs.

Les lp à queues épaisses jouent un rôle important dans les problèmes de **robustesse** et dans l'étude des **aberrations** (observations atypiques), ainsi que dans les questions de **troncature** des lois ou de **censure** des échantillons. A titre d'exemple, on peut tronquer une loi à partir d'une queue C^c donnée en transformant cette loi en sorte qu'elle ne « charge » que la partie centrale C.

(iii) D'un point de vue terminologique, on dit que C^c est une **queue** de P^ξ ou de ξ . Par extension, une partie centrale $C \in \mathcal{B}$ étant donnée, on appelle aussi queue de P^ξ ou de ξ l'ensemble ξ^{-1} (C^c) = [$\xi \in C^c$], ie { $\omega \in \Omega : \xi$ (ω) $\in C^c$ } (unités statistiques sur lesquelles on observe ξ).

On dit aussi parfois (par abus de language) que la masse P^{ξ} (C^{c}) = 1 - P^{ξ} (C) ellemême est la **queue** de la loi P^{ξ} .

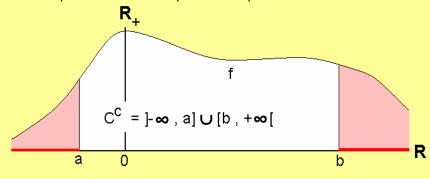
- (iv) En pratique, une partie centrale C contient souvent (ou est définie par) une caractéristique de centralité ou un paramètre de position de P^{ξ} (ou de ξ), eg :
 - (a) E $\xi \in C$ si $\xi \in L_{RK}^{1}(\Omega, \mathcal{F}, P)$ (espérance mathématique);
 - (b) ou $S \xi \in C$ (mode);
 - (c) ou encore $Q_{1/2} \xi \in C$ (si $\mathcal{L} = \mathbb{R}$) (médiane).

La queue de la distribution P^{ξ} est généralement « éloignée » de cette caractéristique (ceci dépend aussi de la **concentration** de P^{ξ}) : eg (a) région critique associée à un test d'hypothèses, ou (b) zones de « fortes » fréquences d'observations aberrantes (queues épaisses, **mélanges légaux**).

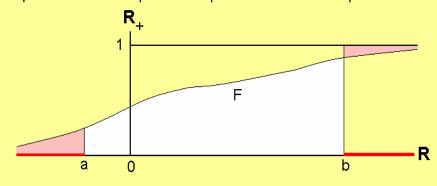
- (v) Dans le cas scalaire, où \mathcal{X} = **R**, une **queue bilatérale** de P^{ξ} est souvent de la forme :
- (3) $C^c = C_a \cup C_b =]-\infty$, a] \cup [b, + ∞ [, avec a < 0 et b > 0,

l'ensemble C_a =]- ∞ , a] étant appelé **queue à gauche** et l'ensemble C_b = [b, + ∞ [**queue à droite** de P^ξ (cf schéma ci-après).

queue d'une loi représentée par sa densité f



queue d'une loi représentée par sa fonction de répartition F



On peut ainsi considérer des situations où |a| >> 0 et |b| >> 0, ou encore étudier le **comportement asymptotique** de la **densité** $f = dP^{\xi} / d\lambda_1$ au voisinage de $-\infty$ ou de $+\infty$, ce qui permet de préciser l'ordre de décroissance des queues.

- (vi) On appelle parfois:
 - (a) **queue** de P^{ξ} le nombre $Q = \int \mathbf{1}(C^{c})(x) dP^{\xi}(x)$;
 - (b) queue à gauche le nombre $Q_a = \int \mathbf{1}(C_a)(x) dP^{\xi}(x)$;
 - (c) queue à droite le nombre $Q_b = \int \mathbf{1}(C_b)(x) dP^{\xi}(x)$.

où l'on note 1(B) la fonction indicatrice d'une partie B de R.

En particulier, on montre eg que :

(4)
$$Q_b = b \cdot P([\xi \ge b]) + \int_D P([\xi \ge x]) dx$$
, où $D = \mathbf{R} \setminus C_b$.

Autrement dit:

(5)
$$Q_b = b \cdot P^{\xi}(C_b) + \int \mathbf{1}_{[b, +\infty[}(x) P^{\xi}(C_x) dx.$$

(vii) Un problème pratique est celui de l'approximation d'une queue.

Ainsi, dans le cas gaussien, on cherche à approximer $p = Q(x) = \int d\mathcal{N}(0,1)(x) = (2 \pi)^{-1/2} \int x_p(1/2) \exp(-x^2) dx$, où $x_p = Q^{-1}(p)$.

En supposant eg que p \leq 1/2, l'**approximation de H.C. HAMAKER** consiste à remplacer x par $x^{\#}$ = 1,238 a (1 + 0,2 a), avec a = R - Log {4 π (1- π)}, et p par p[#] = (1/2) (1 - (1 - e^{-b(2)})), avec b = 0,806 et b(2) désigne b².