RAPPORT DES EXTRÊMES (F6, G1)

(29 / 08 / 2020, © Monfort, Dicostat2005, 2005-2020)

Le **rapport des extrêmes** est, dans sa définition de base à deux éléments, l'équivalent « multiplicatif » empirique de l'**étendue** empirique (concept additif).

(i) Soit $X = (X_1, ..., X_N)$ un **échantillon** quelconque et $X^{(.)}$ l'échantillon ordonné associé à X (cf **statistique d'ordre**).

On appelle rapport des extrêmes la statistique définie par le quotient :

(1)
$$Q_N = X^{(N)} / X^{(1)}$$
.

Comme l'étendue empirique, Q_N est un indicateur de **dispersion** de X (ou de P^X).

(ii) D'autres rapports des extrêmes de même type que le précédent peuvent être définis, eg le rapport $Q_N^{(1)} = X^{(N-1)} / X^{(2)}$ et, plus généralement :

(2)
$$Q_N^{(\alpha, \beta)} = X^{(\beta)} / X^{(\alpha)}$$
, avec $1 \le \alpha < \beta \le N$.

De même, on peut définir le quotient « équilibré » rapportant un total (resp une moyenne) des valeurs extrêmes de droite à un total (resp une moyenne) des valeurs extrêmes de gauche :

(3)
$$Q_N^{(\alpha, \beta)} = (X^{(N)} + X^{(N-1)} + ... + X^{(\beta)}) / (X^{(1)} + ... + X^{(\alpha-1)} + X^{(\alpha)})$$
 (où $1 \le \alpha < \beta \le N$)

(cf aussi moment équilibré, moyenne équilibrée).

(iii) X est souvent un **échantillon iid** dont la **variable parente** est une **vars** ξ de **loi** P^{ξ} : par suite, $P^{X} = (P^{\xi})^{\otimes N}$.

En particulier, si P^{ξ} est une **loi symétrique** pr à 0, si sa **fr** F est continue et si Supp $P^{\xi} = \mathbf{R}$ (support « plein »), alors la loi de la **va** $L_N = \text{Log } Q_N$ est une loi symétrique.