SONDAGE PAR QUOTAS (M5)

(16 / 03 / 2020, © Monfort, Dicostat2005, 2005-2020)

(i) Soit $\Omega = \{\omega_1, ..., \omega_M\}$ un ensemble fini (**population**), $(\mathcal{X}, \mathcal{B})$ et $(\mathcal{Y}, \mathcal{C})$ deux **espaces d'observation** et $A = \{a_1, ..., a_N\}$ un **échantillon aléatoire** extrait de Ω .

On associe aux unités de sondage (éléments ou individus) $\omega \in \Omega$ deux variables (ou « caractères ») ξ et η selon $(\xi, \eta) : \Omega \mapsto (\mathcal{X}, \mathcal{Y})$. Autrement dit, on suppose que l'on peut observer sur chaque élément ω les valeurs ξ (ω) et η (ω). Les caractères peuvent éventuellement être « multiples » ou vectoriels, eg ξ = (ξ_1 ,..., ξ_K) et η = (η_1 ,..., η_G).

On note alors $(X_m , Y_m) = (\xi (\omega_m) , \eta (\omega_m))$ (m = 1,..., M) les « valeurs » observées sur les unités de Ω , $(x_n , y_n) = (\xi (a_n) , \eta (a_n))$ (n = 1,..., N) les « valeurs » observées sur les unités de A, et $((x_1 , y_1) ,..., (x_N , y_N))$ l'échantillon aléatoire résultant de ces dernières. On note aussi resp :

(1)
$$P_M \text{ ou } P^{(\xi, \eta)} = M^{-1} \sum_{m=1}^{M} \delta_{(Xm, Ym)}$$

la **loi de probabilité** (ou « distribution ») du couple (ξ , η) dans la population Ω , et :

(2)
$$P_N = N^{-1} \sum_{n=1}^{N} \delta_{(xn,yn)}$$

la **loi empirique** définie par A, où δ_a désigne la **fonction de DIRAC** placée en a, Xm, Ym, xn et yn désignant resp (par commodité) X_m , Y_m , x_n et y_n .

(ii) On appelle **sondage par quotas** un sondage fondé sur l'idée suivante : si la loi empirique P_N définie par A est « voisine » de la loi théorique P_M définie sur Ω pour la variable (marginale) ξ , alors elle est encore voisine de cette même loi pour la variable (marginale) η . La variable ξ est appelée **variable de contrôle**, ou **caractère de contrôle**.

En pratique, on cherche à stratifier la population Ω à l'aide de la **variable de contrôle** ξ (variable de stratification) (cf **sondage stratifié**). Si $\Pi_{\Omega} = \{\Omega_1,...,\Omega_H\}$ représente la stratification (**partition** de Ω) adoptée, les **rapports** M_h / M sont appelés **quotas**, ou **proportions**, d'effectifs par strate, avec M_h = card Ω_h . Si N est la taille de l'échantillon A, les quotas (absolus) d'**unités de sondage** à observer sont donc :

(3)
$$N_h = (M_h / M) \cdot N, \forall h = 1, ..., H.$$

Une **base de sondage** préalable est donc inutile pour procéder à un sondage par quotas.

(iii) Dans la **méthode des quotas**, le **plan de sondage** Π n'est que partiellement déterminé : Π doit « charger » les échantillons A représentatifs de Ω pour le seul caractère ξ . On ne peut donc pas calculer les **caractéristiques** des **statistiques**

calculées à l'aide du caractère η . Ainsi, dans le cas où $\mathcal{Y} = \mathbf{R}^G$, on ne peut pas évaluer $E_{\Pi} \ y_N$, où y_N est la **moyenne empirique** (vectorielle) calculée à l'aide de l'**échantillon** observé $y = (y_1, ..., y_N)$.

- (iv) Les quotas peuvent être des **quotas « croisés »**, auquel cas la stratification Π_{Ω} précédente s'effectue conjointement pour différentes valeurs (ou modalités) des variables ξ_1 ,..., ξ_K (coordonnées de ξ), ou des **quotas « marginaux »**, auquel cas la stratification s'effectue séparément pour différentes valeurs (ou modalités) de chacune des variables ξ_1 ,..., ξ_K .
- (v) La validité de la **méthode des quotas** suppose notamment :
 - (a) que la liste ξ des variables de contrôle soit bien spécifiée ;
 - (b) que la distribution des variables de contrôle ξ soit bien connue dans Ω ;
 - (c) que ces variables soient corrélées avec les variables d'intérêt étudiées η;
 - (d) que toutes les variables soient mesurées sans erreurs ;
- (e) que le plan de sondage ne charge que des échantillons représentatifs de la population Ω pour les caractères de contrôle ξ .
- (vi) La **méthode des quotas** peut relever d'une interprétation bayésienne (cf **école bayésienne**, **théorie bayésienne**), ce qui lui fournit un fondement probabiliste (indirect).