STATISTIQUES INDÉPENDANTES (D1, E, G1)

(25 / 08 / 2020, © Monfort, Dicostat2005, 2005-2020)

La notion d'indépendance entre statistiques généralise celle entre va indépendantes (cf indépendance stochastique).

(i) Soit $(\Omega, \mathcal{T}, \mathcal{L})$ un modèle statistique de base, $(\mathcal{X}, \mathcal{B})$ un espace d'observation et $(\mathcal{Y}, \mathcal{C})$ et $(\mathcal{Z}, \mathcal{D})$ deux espaces mesurables auxiliaires. Soit $X : \Omega \mapsto \mathcal{X}$ une variable aléatoire et $(\mathcal{X}, \mathcal{B}, \mathcal{L}^X)$ le modèle image du précédent par X. Soit alors S et S et S deux statistiques to S et S

On dit que:

- (a) s et t sont des statistiques indépendantes relativement à \mathscr{Q} , ou des statistiques \mathscr{Q} -indépendantes, ou encore des statistiques indépendantes, ssi les variables aléatoires s et t sont des variables indépendantes quelle que soit $P \in \mathscr{Q}$;
- (b) S et T sont des statistiques indépendantes relativement à \mathcal{L}^X , ou des statistiques \mathcal{L}^X -indépendantes, ou simplement des statistiques indépendantes, ssi les variables aléatoires S et T sont des variables indépendantes quelle que soit $P^X \in \mathcal{L}^X$.
- (ii) L'indépendance se généralise directement à une **suite** ou à une **famille** quelconque de statistiques.