SUITE DE PROBLEMES DE DÉCISION (G3)

(02 / 11 / 2019, © Monfort, Dicostat2005, 2005-2019)

(i) On considère une **suite de modèles statistiques** images (cf **modèle image**) ((\mathcal{X}_n , \mathcal{B}_n , $\mathcal{P}_n^{X(n)}$)) $_{n \in \mathbb{N}}$, tq $\mathcal{P}_n^{X(n)}$ se présente sous la forme paramétrée ($P_{\theta,n}^{X(n)}$) $_{\theta \in \Theta}$, l'ensemble des **paramètres** Θ étant supposé identique pour toutes les familles $\mathcal{P}_n^{X(n)}$ ($n \in \mathbb{N}$) (en notant, par commodité, X(n) pour désigner X_n).

Soit $((D_n, \mathcal{B}(D_n))_{n \in \mathbb{N}}$ une suite d'espaces de décision et $(\delta_n)_{n \in \mathbb{N}}$ une suite de règles de décision pure $\delta_n : \mathcal{L}_n \mapsto D_n$ associant à toute observation $X_n (\omega_n) = x_n$ une décision $d_n = \delta_n (x_n)$.

Enfin, on définit une suite de **fonctions de perte** $L_n: D_n \times \Theta \mapsto \mathbf{R}_+$ qui associent à toute décision prise d_n , alors que le paramètre est $\theta \in \Theta$, une perte égale à L_n (d_n , θ) = L_n (δ_n (x_n), θ), \forall $n \in \mathbf{N}$.

On appelle suite de problèmes de décision statistique, ou simplement suite de problèmes de décision, la suite définie par $((\mathcal{L}_n, \mathcal{B}_n, \mathcal{L}_n^{X(n)}), (D_n, \mathcal{B}(D_n)), L_n))_{n \in \mathbb{N}}$.

(ii) On peut aussi définir une suite de problèmes de décision à partir d'une forme non paramétrée du modèle statistique image précédent (cf eg suite de problèmes d'estimation).

Par ailleurs, on peut (avec adaptation du formalisme) supposer que l'espace $(\Theta, \mathcal{B}_{\Theta})$ des paramètres précédent varie avec l'indice : cependant, dans ce cas, l'interprétation concrète n'est pas toujours simple.

(iii) En pratique, il est fréquent que les espaces $(\mathcal{X}_n$, \mathcal{B}_n), $(D_n$, $\mathcal{B}(D_n)$) ou $(\Theta_n$, $\mathcal{B}_{\Theta(n)})$ soient identiques, ie resp égaux à un même espace $(\mathcal{X}, \mathcal{B})$, $(D, \mathcal{B}(D))$ ou $(\Theta, \mathcal{B}_{\Theta})$, pour tout n.