TEST BILATERAL (I1)

(02 / 05 / 2020, © Monfort, Dicostat2005, 2005-2020)

- (i) On considère un **problème de test** fondé sur un modèle paramétré.
- (a) on appelle **test entre deux hypothèses simples** tout test d'une **hypothèse de base** de la forme $H_0: \theta = \theta_0$ (ou $\theta \in \{\theta_0\}$) contre une **hypothèse alternative** de la forme $H_1: \theta = \theta_1$ (ou $\theta \in \{\theta_1\}$, où $\theta_0 \in \Theta$ et $\theta_1 \in \Theta$ sont deux éléments distincts donnés $(\theta_1 \neq \theta_0)$;
- (b) on appelle **test d'une hypothèse simple contre une hypothèse multiple** le test d'une hypothèse de la forme $H_0: \theta = \theta_0$ (ou $\theta \in \{\theta_0\}$) contre une hypothèse de la forme $H_1: \theta \in \Theta_1$, où Θ_1 est une partie non vide de Θ qui peut éventuellement comprendre θ_0 (**hypothèses emboîtées**), et tq Card $\Theta_1 \geq 2$;
- (c) le **test d'une hypothèse multiple contre une hypothèse simple** se définit de façon symétrique ;
- (d) on appelle **test entre deux hypothèses multiples** tout test d'une hypothèse de la forme $H_0: \theta \in \Theta_0$ contre une hypothèse de la forme $H_1: \theta \in \Theta_1$, où Θ_0 et Θ_1 sont deux parties non vides quelconques de Θ . On suppose souvent que $\{\Theta_0, \Theta_1\}$ constitue une **partition** de Θ . Mais ceci n'est pas toujours le cas, selon le type de test recherché, ou selon la nature du problème : ainsi, on peut considérer le test dans lequel Θ_0 et Θ_1 sont deux parties distinctes de Θ , disjointes ou non. Enfin, on suppose que Card $\Theta_0 \geq 2$ et Card $\Theta_1 \geq 2$.
- (ii) Si ξ est une **vars** et si $\Theta \subset \mathbf{R}$ (ou un ensemble totalement ordonné) (cf **relation d'ordre**), on peut vouloir tester une hypothèse de la forme $H_0: \theta = \theta_0$ contre une hypothèse de la forme $H_a: \theta \neq \theta_0$. L'hypothèse H_a est appelée **hypothèse bilatéral**e, et le test associé est appelé **test bilatéral**, ou **test bilatère**.

Par extension, on peut parler de **test bilatéral** si eg H_a : $\theta \in [\theta_{g1}, \theta_{g2}] \cup [\theta_{d1}, \theta_{d2}]$, avec $\theta_{g1} < \theta_{g2} < \theta_0 < \theta_{d1} < \theta_{d2}$ (deux intervalles, de largeurs données, encadrent θ à des distances données).

- (iii) On suppose que $\Theta \subset \mathbf{R}$ (ou un ensemble totalement ordonné).
- (a) on appelle **test unilatéral à droite** (resp **test unilatéral à gauche**) tout test de la forme :

```
\begin{split} &H_0:\theta\in\Theta_0 \ \ \text{contre} \ \ H_1:\theta\in\Theta_1 \ , \\ &\text{avec} \ \Theta_0 = \{\theta_0\} \ \text{et} \ \Theta_1 = \{\theta\in\Theta:\theta>\theta_0\} \ \text{(resp} \ \Theta_1 = \{\theta\in\Theta:\theta<\theta_0\}) \ ; \end{split}
```

(b) on appelle encore **test bilatéral** tout test de la forme :

```
H_0: \theta \in \Theta_0 contre H_1: \theta \in \Theta_1, avec \Theta_0 = \{\theta_0\} et \Theta_1 = \Theta_0^c = \{\theta \in \Theta: \theta \neq \theta_0\}.
```

(iv) Un test bilatéral s'effectue nécessairement contre une **alternative** H₁ composite (cf **hypothèse composite**). On généralise alors les définitions précédentes.

Ainsi, lorsque $\Theta \subset \mathbf{R}$ (ou un ensemble totalement ordonné):

(a) un test unilatéral peut avoir l'une des formes suivantes :

```
\begin{split} &\Theta_0 = \{\theta_0\} \text{ et } \Theta_1 = [\theta_1',\,\theta_1''] \text{ , avec } \theta_1' > \theta_0 \text{ ;} \\ &\Theta_0 = \{\theta_0\} \text{ et } \Theta_1 = [\theta_1',\,\theta_1''] \text{ , avec } \theta_1'' < \theta_0 \text{ ;} \\ &\Theta_0 = [\theta_0',\,\theta_0''] \text{ et } \Theta_1 = \{\theta_1\}, \text{ avec } \theta_1 > \theta_0'' \text{ ;} \\ &\Theta_0 = [\theta_0',\,\theta_0''] \text{ et } \Theta_1 = \{\theta_1\}, \text{ avec } \theta_0' > \theta_1 \text{ ;} \\ &\Theta_0 = [\theta_0',\,\theta_0''] \text{ et } \Theta_1 = [\theta_1',\,\theta_1''] \text{ , avec } \theta_0'' < \theta_1' \text{ ;} \\ &\Theta_0 = [\theta_0',\,\theta_0''] \text{ et } \Theta_1 = [\theta_1',\,\theta_1''] \text{ , avec } \theta_0'' < \theta_0' \text{ ;} \end{split}
```

(b) un test bilatéral peut recevoir l'une des formes :

```
\begin{split} &\Theta_0 = \{\theta_0\} \text{ et et } \Theta_1 = \Theta_0{}^c = \{\theta \in \Theta : \theta \neq \theta_0\} \text{ ;} \\ &\Theta_0 = [\theta_0{}', \, \theta_0{}''] \text{ et } \Theta_1 = \Theta_0{}^c \text{ ;} \\ &\Theta_0 = [\theta_0{}', \, \theta_0{}''] \text{ et } \Theta_1 = [\theta_{11} \, , \, \theta_{12}] \cup [\theta_{21} \, , \, \theta_{22}], \text{ où } \theta_{12} < \theta_0{}' \text{ et } \theta_{21} > \theta_0{}''. \end{split}
```

- (v) Plus largement, lorsque la va ξ est à valeurs dans \mathbf{R}^K (vecteur aléatoire), on peut encore appeler **test bilatéral** le test d'une hypothèse $H_0: \theta = \theta_0$ contre une hypothèse de la forme $H_a: \theta \in T_K$, où eg :
- (a) T_K est une **partie** de \mathbf{R}^K de la forme $\Pi_{k=1}^K$ {[$\theta_{k,g(1)}$, $\theta_{k,g(2)}$ [\cup [$\theta_{k,d(1)}$, $\theta_{k,d(2)}$ [] (produit de réunions d'intervalles), où [$\theta_{k,g(1)}$, $\theta_{k,g(2)}$ [et [$\theta_{k,d(1)}$, $\theta_{k,d(2)}$ [sont des intervalles de la k-ième composante de \mathbf{R}^K , avec $\theta_{k,g(1)} < \theta_{k,g(2)} < \theta_{k,0} < \theta_{k,d(1)} < \theta_{k,d(2)}$. Les notations commodes g(k) et d(k) désignent resp g_k et d_k (k = 1, 2);
- (b) ou encore T_K est une partie de \mathbf{R}^K de la forme B_K (θ_0 , θ_d) \ B_K (θ_0 , θ_g), où B (a, r) désigne la une **boule** de \mathbf{R}^K de centre a et de rayon r et le triplet (θ_g , θ_0 , θ_d) est tel que θ_g = ($\theta_{g(1)}$,..., $\theta_{g(K)}$), θ_0 = ($\theta_{0(1)}$,..., $\theta_{0(K)}$), θ_d = ($\theta_{d(1)}$,..., $\theta_{d(K)}$), avec $|\theta_{g(k)}$ $\theta_{0(k)}|$ < $|\theta_{d(k)}$ $\theta_{0(k)}|$, \forall k = 1,..., K. Les notations commodes g(k), 0(k) et d(k) désignent encore resp g_k , θ_k et θ_k (k = 1,..., K).
- (vi) Dans ce qui précède :
- (a) les inégalités de définition peuvent être écrites strictes (comme en (iii)) : le test est alors appelé **test strict**. Elles peuvent, alternativement, être écrites au sens large : le test est alors appelé **test large**. Ceci vaut notamment lorsqu'une des **lp** intervenant dans le test est une **loi discrète** ;
 - (b) d'autre part, les extrémités des intervalles peuvent aussi être infinies.

(vii) Un test bilatéral est parfois dit **test bilatère**, ou **test symétrique** ; un test unilatéral est parfois dit **test unilatère** ou **test asymétrique**.