TEST DE COX (G2, I2, I3, J6)

(10 / 06 / 2020, © Monfort, Dicostat2005, 2005-2020)

Le **test de COX** est un test d'hypothèses « séparées » (ie non emboîtées), notamment utilisé comme **test de sélection de modèles**.

(i) Soit $(\mathcal{X}, \mathcal{B}, (P_{\theta}^{X})_{\theta \in \Theta})$ un **modèle image** dominé par une **mesure positive** σ -finie μ , où $X = (X_1, ..., X_N)$ est un **échantillon iid** selon une des **loi** P_{θ}^{X} . Soit Θ_0 et Θ_1 deux **parties** non vides de Θ . On note :

(1)
$$f(x, \theta) = (dP_{\theta}^{X}/d\mu)(x), \quad \forall (x, \theta) \in \mathcal{L} \times \Theta,$$

la fonction de vraisemblance du modèle et :

(2)
$$f_i(x, \theta) = (dP_{\theta}^X / d\mu)(x), \quad \forall (x, \theta) \in \mathcal{X} \times \Theta_i$$

la **restriction** de f à Θ_i (i = 0, 1), ie la fonction de vraisemblance du **sous-modèle** $((\mathcal{X}, \mathcal{B}, (P_{\theta}^{X})_{\theta \in \Theta(i)}), \text{ où } \Theta(i)$ désigne par commodité Θ_i (i = 0, 1).

On veut tester l'hypothèse de base :

(3) $H_0: \theta \in \Theta_0$,

contre l'hypothèse alternative :

(4) $H_1: \theta \in \Theta_1$,

où l'on on suppose que H_0 et H_1 sont :

- (a) des **hypothèses non emboîtées**, au sens où l'on a ni $\Theta_0 \subset \Theta_1$, ni $\Theta_1 \subset \Theta_0$;
- (b) des **hypothèses** « **séparées** », ie aucune loi P_{θ}^{X} tq $\theta \in \Theta_{0}$ ne peut être obtenue comme « limite » (quelconque) d'une **famille** de lois P_{θ}^{X} tq $\theta \in \Theta_{1}$.

Soit S (resp T) l'estimateur de θ obtenu par maximisation de la vraisemblance f_0 (resp f_1). Cet estimateur est donc contraint par $\theta \in \Theta_0$ (resp $\theta \in \Theta_1$) (cf contrainte).

Le test de D.R. COX est fondé sur la statistique de D.R. COX suivante (cf aussi test du rapport des vraisemblances) :

(5)
$$C_N = N^{-1} \cdot \sum_{n=1}^{N} \text{Log} \{f_{0,1}^{-}(X_n, T) / f_{0,0}^{-}(X_n, S)\},$$

dans laquelle $f_{0,i}$ (i = 0, 1) est la densité élémentaire composant f_i , ie f_i (x_1 ,..., x_N , θ) = $\prod_{n=1}^N f_{0,i}$ (x_n , θ).

1

(ii) On montre que, sous l'hypothèse H_0 et sous certaines **conditions de régularité**, il existe $\sigma(\theta) > 0$ tq la **convergence en loi (normalité asymptotique)** suivante :

(6)
$$N^{1/2}$$
. $(C_N - E_\theta C_N) \rightarrow \mathcal{L}_{N \to +\infty} \mathcal{N}_1 (0, \sigma^2(\theta))$

est vérifiée.

Sous l'hypothèse H_1 , P_{θ} -lim $_N$ $C_N = +\infty$ ($\forall \ \theta \in \Theta_1$): le test possède donc une **puissance** élevée et permet de rejeter H_0 lorsque $C_N >> 0$. Si $\alpha \in]0$, 1[est le seuil retenu pour le test (cf **risque de première espèce**), la **région critique** est de la forme :

(7)
$$W = \{C_N / \sigma(S) > q_{1-\alpha}\},\$$

où $q_{1-\alpha}$ est le quantile d'ordre 1 - α de la loi normale réduite $\mathcal{N}(0, 1)$.

Cette région est asymptotique et dépend de certaines conditions tq :

(8)
$$\{\sigma(S)\}^{-1} \cdot C_N \to \mathcal{E}_{N \to +\infty} \mathcal{N}_1(0, 1).$$

Si l'on pose, parmi d'autres formulations possibles :

(9)
$$f_{\lambda}(x, \theta) = [(f_0(x, \theta))^{\lambda}, (f_1(x, \theta))^{1-\lambda}] / c(\theta, \lambda), \quad \forall \lambda \in [0, 1],$$

où c (θ, λ) est une constante de **normalisation** tq f soit une **densité de probabilité** (sommation à 1), le test précédent est souvent présenté comme test de l'hypothèse :

(10)
$$H_0': \lambda = 1$$

contre l'hypothèse :

(11)
$$H_1': \lambda = 0$$
.