TEST DE KENDALL (D1, I2)

(15 / 05 / 2020, © Monfort, Dicostat2005, 2005-2020)

Il existe plusieurs tests du nom de **test de KENDALL**, notamment un **test non paramétrique** d'indépendance, dont on présente deux formes.

(i) Le problème de l'indépendance conduit à étudier un couple aléatoire $\zeta = (\xi, \eta) : \Omega \mapsto \mathbb{R}^2$ dont on observe un échantillon $((X_1, Y_1), ..., (X_N, Y_N))$ (copies, indépendantes entre elles, du couple (ξ, η)). On note $P^{\zeta} = P^{(\xi, \eta)}$ leur loi commune.

Le test de l'hypothèse de l'indépendance :

(1) H_0 : ξ est indépendante de η ,

s'écrit aussi :

(1)
$$H_0: P^{(\xi, \eta)} = P^{\xi} \otimes P^{\eta}$$

où l'on note P^{ξ} (resp P^{η}) la **loi marginale** (ie la loi « propre ») de ξ (resp de η).

(ii) Pour tester H_0 contre une alternative de **régression négative** (resp de régression positive), on définit la **statistique de rang** (non linéaire en (R, S)) suivante, dite **statistique de M.G. KENDALL** :

(2)
$$K_N = K_N' - K_N''$$
,

dans laquelle (en notant u la fonction de HEAVYSIDE) :

(2a)
$$K_N' = \sum_{\alpha=1}^N \sum_{\beta=1}^N \sum_{(\beta \neq \alpha)} u(X_\alpha - X_\beta) \cdot u(Y_\alpha - Y_\beta) = \sum_{\alpha < \beta} u(R_\beta^* - R_\alpha^*)$$

représente le nombre de paires de couples ((X_{α} , Y_{α}), (X_{β} , Y_{β})) qui varient dans le même sens ;

$$(2_b) \quad \mathsf{K_N''} \; = \; \Sigma_{\alpha=1}{}^\mathsf{N} \; \Sigma_{\beta=1}{}^\mathsf{N} \; {}_{(\beta \neq \alpha)} \; \mathsf{u} \; (\mathsf{X}_\beta - \mathsf{X}_\alpha) \; . \; \mathsf{u} \; (\mathsf{Y}_\alpha - \mathsf{Y}_\beta) \; = \; \Sigma \; \Sigma_{\alpha < \beta} \; \mathsf{u} \; (\mathsf{R}_\alpha^{\; \star} - \mathsf{R}_\beta^{\; \star})$$

représente le nombre de paires de couples qui varient en sens contraire.

La statistique K_N permet d'estimer sans biais le **coefficient** suivant, appelé τ (ou « tau ») de M.G. KENDALL (théorique) (cf aussi coefficient de KENDALL) :

1

(3)
$$\tau = 4 . \int F(x, y) dP^{(\xi, \eta)}(x, y) - 1,$$

dans lequel F est la fonction de répartition de (ξ, η) .

Ce coefficient vérifie les propriétés suivantes :

(a) $|\tau| \le 1$ (cf aussi coefficient de corrélation);

(b) si $\tau>0$ (resp si $\tau<0$), on parle de **dépendance positive** (resp de **dépendance négative**) entre ξ et η .

La statistique suivante, appelée τ (ou « tau ») de M.G. KENDALL (empirique) :

(4)
$$\tau_N = 2 \cdot N^{-1} (N-1)^{-1} K_N$$
,

est un **estimateur sans biais** (ie E $\tau_N = \tau$).

D'autre part, sous l'hypothèse H₀ d'indépendance, on établit la **convergence en loi** suivante :

(5)
$$\mathscr{L}\{K_N / S_0(K_N)\} \rightarrow_{N \to +\infty} \mathscr{N}(0, 1)$$
 (loi normale réduite),

avec pour premiers moments:

(6)
$$E_0(K_N) = 0,$$
 $V_0(K_N) = (N-1) N (2 N + 5) / 18 = {S_0(K_N)}^2,$

où $\{S_0 (K_N)\}^2$ désigne le carré de l'écart-type empirique $S_0 (K_N)$.

Le test de M.G. KENDALL en résulte.

(iii) Si l'on définit le **coefficient de M.G. KENDALL** (théorique) associé à la loi $P^{(\xi, \eta)}$ du couple (ξ, η) de façon analogue à (2):

(7)
$$\tau = 2 P([(\xi' - \xi'') (\eta' - \eta'') > 0]) - 1,$$

l'hypothèse d'indépendance peut aussi s'écrire :

(8)
$$H_0: \tau = 0$$
 (car $P^{(\xi, \eta)} = P^{\xi} \otimes P^{\eta}$).

On définit, par suite, la statistique de M.G. KENDALL selon :

(9)
$$K_N = \sum_{\alpha=1}^{N-1} \sum_{\beta=\alpha+1}^{N} (\beta \neq \alpha) v \{(X_{\alpha}, X_{\beta}), (Y_{\alpha}, Y_{\beta})\},$$

où la fonction v : \mathbb{R}^2 x $\mathbb{R}^2 \mapsto \mathbb{R}$ vérifie la définition suivante :

(10)
$$v \{(a, b), (c, d)\} =$$

$$+ 1 \quad ssi (a - b) (c - d) > 0,$$

$$- 1 \quad ssi (a - b) (c - d) < 0.$$

Le **test de M.G. KENDALL**, fondé sur K_N , est le test asymptotique basé sur la **convergence en loi** ci-après :

$$(11) \quad \mathscr{L}\{\mathsf{K}_{\mathsf{N}}\,/\,\mathsf{S}_{\mathsf{0}}\,(\mathsf{K}_{\mathsf{N}})\} \,\rightarrow_{\,\mathsf{N}\,\rightarrow\,+\infty}\,\,\mathscr{N}\,\,(\mathsf{0},\,\mathsf{1}),$$

dans laquelle l'écart-type S_0 (K_N) est défini (sous l'hypothèse H_0) en (6).