TEST DE PITMAN (I2)

(12 / 12 / 2019, © Monfort, Dicostat2005, 2005-2019)

Le test de PITMAN est un test non paramétrique d'homogénéité du premier ordre (moyennes arithmétiques théoriques), fondé sur la notion de concordance entre échantillons.

(i) On considère un problème à deux échantillons $X^i = (X_{i,1},...,X_{i,N(i)})$ (i = 1, 2) dont les coordonnées sont des **vars** et dont les **moyennes empiriques** respectives sont notées $\overline{X}_i = (N_i)^{-1} \sum_{n(i)=1}^{N(i)} X_{i,n(i)}$ (cf **problème à plusieurs échantillons**). Les symboles n(i) et N(i) désignent resp, par commodité, les indices n_i et N_i . On note enfin $X = (X_1,...,X_N)$ (avec $N = N_1 + N_2$) l'échantillon d'ensemble mis dans un ordre quelconque.

Lorsque X^2 est donné (ie à X^2 fixé), il existe $C_N^{N(1)}$ façons différentes et équiprobables de partitionner X selon le schéma (X^1, X^2) .

Le test de l'hypothèse de base :

(1)
$$H_0: \mu_2 = \mu_1$$
 (égalité des moyennes)

peut donc se baser sur une **statistique** tq la suivante (parfois appelée **statistique de E.J.G. PITMAN**) :

(2)
$$D_{N(1)N(2)} = \overline{X}_i - \overline{X}_2$$
,

qui mesure la différence (« divergence » moyenne, ou « **écart** » moyen) entre les **populations** d'où sont extraits les échantillons. Ces populations sont représentées resp par les **fonctions de répartition** F_i (i = 1, 2).

(ii) Le **test de E.J.G. PITMAN** consiste à accepter H_0 si $D_{N(1)N(2)}$ est « voisin » de zéro (échantillons concordants), à la refuser sinon (échantillons discordants).

La loi de probabilité de $D_{N(1)N(2)}$ étant connue, une région critique du test, pour un niveau donné $\alpha \in]0, 1[$, est de la forme :

(3)
$$W = [D_{N(1)N(2)} > q_{1-\alpha}],$$

où $q_{1-\alpha}$ est le **quantile** d'ordre 1 - α de la loi en question.

(iii) Ce test peut s'étendre au problème à plusieurs échantillons en considérant les différentes façons équiprobables de partitionner X selon (X¹,..., X^k).

1