TEST SANS BIAIS (12)

(19 / 06 / 2020, © Monfort, Dicostat2005, 2005-2020)

(i) On considère un problème de test fondé sur une structure statistique fondamentale $(\Omega, \mathcal{F}, (P_{\theta})_{\theta \in \Theta})$ et un espace d'observation $(\mathcal{X}, \mathcal{B})$. Soit $X : \Omega \mapsto \mathcal{X}$ une variable aléatoire (ou un échantillon) et $\{\mathcal{X}, \mathcal{B}, (P_{\theta}^{X})_{\theta \in \Theta}\}$ le modèle image obtenu.

On définit une **hypothèse de base** $H_b:\theta\in\Theta_b$, où $\Theta_b\subset\Theta$ est non vide, et une **alternative** $H_a:\theta\in\Theta_a$, où $\Theta_a\subset\Theta$ est non vide et tq $\Theta_a\cap\Theta_b=\emptyset$ (cf schéma). L'hypothèse de base est souvent désignée par l'indice 0 au lieu de b (« hypothèse « nulle » H_0 avec Θ_0 au lieu de Θ_b), et son alternative est souvent désignée par l'indice 1 au lieu de a (d'où H_1 au lieu de H_a , et Θ_1 au lieu de Θ_a).

états de la Nature

H_b

H_a d_0 $1 - \alpha$ β d_1 α $1 - \beta = \eta$

α = risque de première espèce

 β = risque de seconde espèce

 η = puissance

Etant donné un nombre $\alpha \in]0, 1[$, on dit qu'un **test pur** $\varphi : \mathcal{X} \mapsto [0, 1]$ est un **test sans biais**, ou parfois un **test sans distorsion**, de **niveau** α , ou au **seuil** α , ssi :

(a) φ est de niveau au plus égal à (ie majoré par) α sur Θ_0 , ce qui s'écrit :

(1)
$$E_{\theta} \varphi(X) \leq \alpha$$
, $\forall \theta \in \Theta_0$;

(b) ϕ est de puissance au moins égale à (ie minorée par) α sur Θ_{a} , ce qui s'écrit :

(2)
$$E_{\theta} \varphi (X) \geq \alpha$$
, $\forall \theta \in \Theta_a$.

Autrement dit, parmi les tests de niveau inférieur à α , le test ϕ est tq la **probabilité** de rejeter H_0 alors que H_a est vraie est supérieure à celle de rejeter H_0 alors que H_0 elle-même est vraie.

1

La condition (1) s'écrit aussi :

(1)'
$$\alpha_0 = \sup_{\theta \in \Theta_0} \alpha_{\theta} (\varphi) \leq \alpha$$
,

et la condition (2) s'écrit aussi :

(2)'
$$\alpha_0 = \inf_{\theta \in \Theta a} \eta_{\theta} (\varphi) = \inf_{\theta \in \Theta a} (1 - \beta_{\theta} (\varphi)) \geq \alpha$$
,

où l'on note, par commodité, Q0 et Qa les ensembles Θ_0 et Θ_a .

On note souvent $E_0 \varphi(X)$ pour représenter $E_\theta \varphi(X)$ lorsque θ parcourt Θ_0 et $E_a \varphi(X)$ pour représenter $E_\theta \varphi(X)$ lorsque θ parcourt Θ_a .

Enfin, les deux conditions précédentes se résument, de façon symétrique, dans la condition :

(3)
$$\sup_{\Theta} E_0 \varphi(X) \leq \alpha$$
, et $\inf_{\Theta} E_a \varphi(X) \geq \alpha$.

Un test sans biais possède ainsi une propriété de « bon sens » et il est souvent utilisés.

Cette notion est à rapprocher de celle de région de confiance sans biais.

(ii) A titre d'exempte, le test « trivial » φ défini par :

(4)
$$\varphi(x) = \alpha \quad (P_{\theta}\text{-p.s.}, \forall \theta \in \Theta) \text{ (test « constant »)}$$

est un test sans biais.

(iii) A contrario, un test ϕ est un **test biaisé** ssi la probabilité de rejeter H_0 lorsque H_a est vraie est inférieure à la probabilité de rejeter H_0 lorsque H_0 est vraie.